Mercurial > hg > octave-nkf
view scripts/statistics/tests/kolmogorov_smirnov_test.m @ 6746:a8105a726e68
[project @ 2007-06-19 08:18:34 by dbateman]
author | dbateman |
---|---|
date | Tue, 19 Jun 2007 08:18:34 +0000 |
parents | 34f96dd5441b |
children | 451b346d8c2f |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{pval}, @var{ks}] =} kolmogorov_smirnov_test (@var{x}, @var{dist}, @var{params}, @var{alt}) ## Perform a Kolmogorov-Smirnov test of the null hypothesis that the ## sample @var{x} comes from the (continuous) distribution dist. I.e., ## if F and G are the CDFs corresponding to the sample and dist, ## respectively, then the null is that F == G. ## ## The optional argument @var{params} contains a list of parameters of ## @var{dist}. For example, to test whether a sample @var{x} comes from ## a uniform distribution on [2,4], use ## ## @example ## kolmogorov_smirnov_test(x, "uniform", 2, 4) ## @end example ## ## With the optional argument string @var{alt}, the alternative of ## interest can be selected. If @var{alt} is @code{"!="} or ## @code{"<>"}, the null is tested against the two-sided alternative F ## != G. In this case, the test statistic @var{ks} follows a two-sided ## Kolmogorov-Smirnov distribution. If @var{alt} is @code{">"}, the ## one-sided alternative F > G is considered. Similarly for @code{"<"}, ## the one-sided alternative F > G is considered. In this case, the ## test statistic @var{ks} has a one-sided Kolmogorov-Smirnov ## distribution. The default is the two-sided case. ## ## The p-value of the test is returned in @var{pval}. ## ## If no output argument is given, the p-value is displayed. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: One-sample Kolmogorov-Smirnov test function [pval, ks] = kolmogorov_smirnov_test (x, dist, varargin) if (nargin < 2) print_usage (); endif if (! isvector (x)) error ("kolmogorov_smirnov_test: x must be a vector"); endif n = length (x); s = sort (x); f = str2func (sprintf ("%s_cdf", dist)); alt = "!="; if (nargin == 2) z = reshape (feval (f, s), 1, n); else args = ""; for k = 1 : (nargin-2); tmp = varargin{k}; if ischar (tmp) alt = tmp; else args = sprintf ("%s, %g", args, tmp); endif endfor z = reshape (eval (sprintf ("%s(s%s);", func2str (f), args)), 1, n); endif if (strcmp (alt, "!=") || strcmp (alt, "<>")) ks = sqrt (n) * max (max ([abs(z - (0:(n-1))/n); abs(z - (1:n)/n)])); pval = 1 - kolmogorov_smirnov_cdf (ks); elseif (strcmp (alt, ">")) ks = sqrt (n) * max (max ([z - (0:(n-1))/n; z - (1:n)/n])); pval = exp (- 2 * ks^2); elseif (strcmp (alt, "<")) ks = - sqrt (n) * min (min ([z - (0:(n-1))/n; z - (1:n)/n])); pval = exp (- 2 * ks^2); else error ("kolmogorov_smirnov_test: alternative %s not recognized", alt); endif if (nargout == 0) printf ("pval: %g\n", pval); endif endfunction