Mercurial > hg > octave-nkf
view src/ov-re-sparse.cc @ 15283:a95432e7309c stable release-3-6-3
Version 3.6.3 released.
* configure.ac (AC_INIT): Version is now 3.6.3.
(OCTAVE_RELEASE_DATE): Now 2012-09-04.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Tue, 04 Sep 2012 13:17:13 -0400 |
parents | 72c96de7a403 |
children | 29aabe9b37a2 |
line wrap: on
line source
/* Copyright (C) 2004-2012 David Bateman Copyright (C) 1998-2004 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <climits> #include <iostream> #include <vector> #include "lo-specfun.h" #include "lo-mappers.h" #include "oct-locbuf.h" #include "ov-base.h" #include "ov-scalar.h" #include "gripes.h" #include "ls-hdf5.h" #include "ov-re-sparse.h" #include "ov-base-sparse.h" #include "ov-base-sparse.cc" #include "ov-bool-sparse.h" template class OCTINTERP_API octave_base_sparse<SparseMatrix>; DEFINE_OCTAVE_ALLOCATOR (octave_sparse_matrix); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_sparse_matrix, "sparse matrix", "double"); idx_vector octave_sparse_matrix::index_vector (void) const { if (matrix.numel () == matrix.nnz ()) return idx_vector (array_value ()); else { std::string nm = type_name (); error ("%s type invalid as index value", nm.c_str ()); return idx_vector (); } } octave_base_value * octave_sparse_matrix::try_narrowing_conversion (void) { octave_base_value *retval = 0; if (Vsparse_auto_mutate) { // Don't use numel, since it can overflow for very large matrices // Note that for the second test, this means it becomes approximative // since it involves a cast to double to avoid issues of overflow if (matrix.rows () == 1 && matrix.cols () == 1) { // Const copy of the matrix, so the right version of () operator used const SparseMatrix tmp (matrix); retval = new octave_scalar (tmp (0)); } else if (matrix.cols () > 0 && matrix.rows () > 0 && (double (matrix.byte_size ()) > double (matrix.rows ()) * double (matrix.cols ()) * sizeof (double))) retval = new octave_matrix (matrix.matrix_value ()); } return retval; } double octave_sparse_matrix::double_value (bool) const { double retval = lo_ieee_nan_value (); if (numel () > 0) { if (numel () > 1) gripe_implicit_conversion ("Octave:array-as-scalar", "real sparse matrix", "real scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("real sparse matrix", "real scalar"); return retval; } Complex octave_sparse_matrix::complex_value (bool) const { double tmp = lo_ieee_nan_value (); Complex retval (tmp, tmp); // FIXME -- maybe this should be a function, valid_as_scalar() if (rows () > 0 && columns () > 0) { if (numel () > 1) gripe_implicit_conversion ("Octave:array-as-scalar", "real sparse matrix", "complex scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("real sparse matrix", "complex scalar"); return retval; } Matrix octave_sparse_matrix::matrix_value (bool) const { return matrix.matrix_value (); } boolNDArray octave_sparse_matrix::bool_array_value (bool warn) const { NDArray m = matrix.matrix_value (); if (m.any_element_is_nan ()) gripe_nan_to_logical_conversion (); else if (warn && m.any_element_not_one_or_zero ()) gripe_logical_conversion (); return boolNDArray (m); } charNDArray octave_sparse_matrix::char_array_value (bool) const { charNDArray retval (dims (), 0); octave_idx_type nc = matrix.cols (); octave_idx_type nr = matrix.rows (); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = matrix.cidx(j); i < matrix.cidx(j+1); i++) retval(matrix.ridx(i) + nr * j) = static_cast<char>(matrix.data (i)); return retval; } ComplexMatrix octave_sparse_matrix::complex_matrix_value (bool) const { return ComplexMatrix (matrix.matrix_value ()); } ComplexNDArray octave_sparse_matrix::complex_array_value (bool) const { return ComplexNDArray (ComplexMatrix (matrix.matrix_value ())); } NDArray octave_sparse_matrix::array_value (bool) const { return NDArray (matrix.matrix_value ()); } SparseBoolMatrix octave_sparse_matrix::sparse_bool_matrix_value (bool warn) const { if (matrix.any_element_is_nan ()) gripe_nan_to_logical_conversion (); else if (warn && matrix.any_element_not_one_or_zero ()) gripe_logical_conversion (); return mx_el_ne (matrix, 0.0); } octave_value octave_sparse_matrix::convert_to_str_internal (bool, bool, char type) const { octave_value retval; dim_vector dv = dims (); octave_idx_type nel = dv.numel (); if (nel == 0) { char s = '\0'; retval = octave_value (&s, type); } else { octave_idx_type nr = matrix.rows (); octave_idx_type nc = matrix.cols (); charNDArray chm (dv, static_cast<char> (0)); bool warned = false; for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = matrix.cidx(j); i < matrix.cidx(j+1); i++) { octave_quit (); double d = matrix.data (i); if (xisnan (d)) { gripe_nan_to_character_conversion (); return retval; } else { int ival = NINT (d); if (ival < 0 || ival > UCHAR_MAX) { // FIXME -- is there something // better we could do? ival = 0; if (! warned) { ::warning ("range error for conversion to character value"); warned = true; } } chm (matrix.ridx(i) + j * nr) = static_cast<char> (ival); } } retval = octave_value (chm, type); } return retval; } bool octave_sparse_matrix::save_binary (std::ostream& os, bool&save_as_floats) { dim_vector d = this->dims (); if (d.length() < 1) return false; // Ensure that additional memory is deallocated matrix.maybe_compress (); int nr = d(0); int nc = d(1); int nz = nnz (); int32_t itmp; // Use negative value for ndims to be consistent with other formats itmp= -2; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nr; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nc; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nz; os.write (reinterpret_cast<char *> (&itmp), 4); save_type st = LS_DOUBLE; if (save_as_floats) { if (matrix.too_large_for_float ()) { warning ("save: some values too large to save as floats --"); warning ("save: saving as doubles instead"); } else st = LS_FLOAT; } else if (matrix.nnz () > 8192) // FIXME -- make this configurable. { double max_val, min_val; if (matrix.all_integers (max_val, min_val)) st = get_save_type (max_val, min_val); } // add one to the printed indices to go from // zero-based to one-based arrays for (int i = 0; i < nc+1; i++) { octave_quit (); itmp = matrix.cidx(i); os.write (reinterpret_cast<char *> (&itmp), 4); } for (int i = 0; i < nz; i++) { octave_quit (); itmp = matrix.ridx(i); os.write (reinterpret_cast<char *> (&itmp), 4); } write_doubles (os, matrix.data(), st, nz); return true; } bool octave_sparse_matrix::load_binary (std::istream& is, bool swap, oct_mach_info::float_format fmt) { int32_t nz, nc, nr, tmp; char ctmp; if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); if (tmp != -2) { error ("load: only 2D sparse matrices are supported"); return false; } if (! is.read (reinterpret_cast<char *> (&nr), 4)) return false; if (! is.read (reinterpret_cast<char *> (&nc), 4)) return false; if (! is.read (reinterpret_cast<char *> (&nz), 4)) return false; if (swap) { swap_bytes<4> (&nr); swap_bytes<4> (&nc); swap_bytes<4> (&nz); } SparseMatrix m (static_cast<octave_idx_type> (nr), static_cast<octave_idx_type> (nc), static_cast<octave_idx_type> (nz)); for (int i = 0; i < nc+1; i++) { octave_quit (); if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); m.xcidx(i) = tmp; } for (int i = 0; i < nz; i++) { octave_quit (); if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); m.xridx(i) = tmp; } if (! is.read (reinterpret_cast<char *> (&ctmp), 1)) return false; read_doubles (is, m.xdata (), static_cast<save_type> (ctmp), nz, swap, fmt); if (error_state || ! is) return false; if (! m.indices_ok ()) return false; matrix = m; return true; } #if defined (HAVE_HDF5) bool octave_sparse_matrix::save_hdf5 (hid_t loc_id, const char *name, bool save_as_floats) { dim_vector dv = dims (); int empty = save_hdf5_empty (loc_id, name, dv); if (empty) return (empty > 0); // Ensure that additional memory is deallocated matrix.maybe_compress (); #if HAVE_HDF5_18 hid_t group_hid = H5Gcreate (loc_id, name, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else hid_t group_hid = H5Gcreate (loc_id, name, 0); #endif if (group_hid < 0) return false; hid_t space_hid = -1, data_hid = -1; bool retval = true; SparseMatrix m = sparse_matrix_value (); octave_idx_type tmp; hsize_t hdims[2]; space_hid = H5Screate_simple (0, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "nr", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "nr", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.rows (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "nc", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "nc", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.cols (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "nz", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "nz", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.nnz (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); hdims[0] = m.cols() + 1; hdims[1] = 1; space_hid = H5Screate_simple (2, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "cidx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "cidx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } octave_idx_type * itmp = m.xcidx (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); hdims[0] = m.nnz (); hdims[1] = 1; space_hid = H5Screate_simple (2, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "ridx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "ridx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } itmp = m.xridx (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } hid_t save_type_hid = H5T_NATIVE_DOUBLE; if (save_as_floats) { if (m.too_large_for_float ()) { warning ("save: some values too large to save as floats --"); warning ("save: saving as doubles instead"); } else save_type_hid = H5T_NATIVE_FLOAT; } #if HAVE_HDF5_INT2FLOAT_CONVERSIONS // hdf5 currently doesn't support float/integer conversions else { double max_val, min_val; if (m.all_integers (max_val, min_val)) save_type_hid = save_type_to_hdf5 (get_save_type (max_val, min_val)); } #endif /* HAVE_HDF5_INT2FLOAT_CONVERSIONS */ #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "data", save_type_hid, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "data", save_type_hid, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } double * dtmp = m.xdata (); retval = H5Dwrite (data_hid, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, dtmp) >= 0; H5Dclose (data_hid); H5Sclose (space_hid); H5Gclose (group_hid); return retval; } bool octave_sparse_matrix::load_hdf5 (hid_t loc_id, const char *name) { octave_idx_type nr, nc, nz; hid_t group_hid, data_hid, space_hid; hsize_t rank; dim_vector dv; int empty = load_hdf5_empty (loc_id, name, dv); if (empty > 0) matrix.resize(dv); if (empty) return (empty > 0); #if HAVE_HDF5_18 group_hid = H5Gopen (loc_id, name, H5P_DEFAULT); #else group_hid = H5Gopen (loc_id, name); #endif if (group_hid < 0) return false; #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "nr", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "nr"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nr) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "nc", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "nc"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nc) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "nz", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "nz"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nz) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); SparseMatrix m (static_cast<octave_idx_type> (nr), static_cast<octave_idx_type> (nc), static_cast<octave_idx_type> (nz)); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "cidx", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "cidx"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank); H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nc + 1 || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } octave_idx_type *itmp = m.xcidx (); if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) < 0) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "ridx", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "ridx"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nz || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } itmp = m.xridx (); if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) < 0) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "data", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "data"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nz || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } double *dtmp = m.xdata (); bool retval = false; if (H5Dread (data_hid, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, dtmp) >= 0 && m.indices_ok ()) { retval = true; matrix = m; } H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return retval; } #endif mxArray * octave_sparse_matrix::as_mxArray (void) const { mwSize nz = nzmax(); mwSize nr = rows(); mwSize nc = columns(); mxArray *retval = new mxArray (mxDOUBLE_CLASS, nr, nc, nz, mxREAL); double *pr = static_cast<double *> (retval->get_data ()); mwIndex *ir = retval->get_ir(); mwIndex *jc = retval->get_jc(); for (mwIndex i = 0; i < nz; i++) { pr[i] = matrix.data(i); ir[i] = matrix.ridx(i); } for (mwIndex i = 0; i < nc + 1; i++) jc[i] = matrix.cidx(i); return retval; } octave_value octave_sparse_matrix::map (unary_mapper_t umap) const { switch (umap) { case umap_imag: return SparseMatrix (matrix.rows (), matrix.cols (), 0.0); case umap_real: case umap_conj: return matrix; // Mappers handled specially. #define ARRAY_METHOD_MAPPER(UMAP, FCN) \ case umap_ ## UMAP: \ return octave_value (matrix.FCN ()) ARRAY_METHOD_MAPPER (abs, abs); #define ARRAY_MAPPER(UMAP, TYPE, FCN) \ case umap_ ## UMAP: \ return octave_value (matrix.map<TYPE> (FCN)) ARRAY_MAPPER (acos, Complex, rc_acos); ARRAY_MAPPER (acosh, Complex, rc_acosh); ARRAY_MAPPER (angle, double, ::arg); ARRAY_MAPPER (arg, double, ::arg); ARRAY_MAPPER (asin, Complex, rc_asin); ARRAY_MAPPER (asinh, double, ::asinh); ARRAY_MAPPER (atan, double, ::atan); ARRAY_MAPPER (atanh, Complex, rc_atanh); ARRAY_MAPPER (erf, double, ::erf); ARRAY_MAPPER (erfinv, double, ::erfinv); ARRAY_MAPPER (erfc, double, ::erfc); ARRAY_MAPPER (gamma, double, xgamma); ARRAY_MAPPER (lgamma, Complex, rc_lgamma); ARRAY_MAPPER (cbrt, double, ::cbrt); ARRAY_MAPPER (ceil, double, ::ceil); ARRAY_MAPPER (cos, double, ::cos); ARRAY_MAPPER (cosh, double, ::cosh); ARRAY_MAPPER (exp, double, ::exp); ARRAY_MAPPER (expm1, double, ::expm1); ARRAY_MAPPER (fix, double, ::fix); ARRAY_MAPPER (floor, double, ::floor); ARRAY_MAPPER (log, Complex, rc_log); ARRAY_MAPPER (log2, Complex, rc_log2); ARRAY_MAPPER (log10, Complex, rc_log10); ARRAY_MAPPER (log1p, Complex, rc_log1p); ARRAY_MAPPER (round, double, xround); ARRAY_MAPPER (roundb, double, xroundb); ARRAY_MAPPER (signum, double, ::signum); ARRAY_MAPPER (sin, double, ::sin); ARRAY_MAPPER (sinh, double, ::sinh); ARRAY_MAPPER (sqrt, Complex, rc_sqrt); ARRAY_MAPPER (tan, double, ::tan); ARRAY_MAPPER (tanh, double, ::tanh); ARRAY_MAPPER (isnan, bool, xisnan); ARRAY_MAPPER (isna, bool, octave_is_NA); ARRAY_MAPPER (isinf, bool, xisinf); ARRAY_MAPPER (finite, bool, xfinite); default: // Attempt to go via dense matrix. return octave_base_sparse<SparseMatrix>::map (umap); } }