Mercurial > hg > octave-nkf
view liboctave/DiagArray2.h @ 8384:a99b9113c58c
optimize sparse bool indexing
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Mon, 08 Dec 2008 15:33:28 +0100 |
parents | e3c9102431a9 |
children | 937921654627 |
line wrap: on
line source
// Template array classes /* Copyright (C) 1996, 1997, 2000, 2002, 2003, 2004, 2005, 2006, 2007 John W. Eaton Copyright (C) 2008 Jaroslav Hajek This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #if !defined (octave_DiagArray2_h) #define octave_DiagArray2_h 1 #include <cassert> #include <cstdlib> #include "Array.h" #include "lo-error.h" // A two-dimensional array with diagonal elements only. // // Idea and example code for Proxy class and functions from: // // From: kanze@us-es.sel.de (James Kanze) // Subject: Re: How to overload [] to do READ/WRITE differently ? // Message-ID: <KANZE.93Nov29151407@slsvhdt.us-es.sel.de> // Sender: news@us-es.sel.de // Date: 29 Nov 1993 14:14:07 GMT // -- // James Kanze email: kanze@us-es.sel.de // GABI Software, Sarl., 8 rue du Faisan, F-67000 Strasbourg, France // Array<T> is inherited privately because we abuse the dimensions variable // for true dimensions. Therefore, the inherited Array<T> object is not a valid // Array<T> object, and should not be publicly accessible. template <class T> class DiagArray2 : private Array<T> { private: T get (octave_idx_type i) { return Array<T>::xelem (i); } void set (const T& val, octave_idx_type i) { Array<T>::xelem (i) = val; } class Proxy { public: Proxy (DiagArray2<T> *ref, octave_idx_type r, octave_idx_type c) : i (r), j (c), object (ref) { } const Proxy& operator = (const T& val) const { if (i == j) { if (object) object->set (val, i); } else (*current_liboctave_error_handler) ("invalid assignment to off-diagonal in diagonal array"); return *this; } operator T () const { if (object && i == j) return object->get (i); else { static T foo; return foo; } } private: // FIXME -- this is declared private to keep the user from // taking the address of a Proxy. Maybe it should be implemented // by means of a companion function in the DiagArray2 class. T *operator& () const { assert (0); return 0; } octave_idx_type i; octave_idx_type j; DiagArray2<T> *object; }; friend class Proxy; protected: DiagArray2 (T *d, octave_idx_type r, octave_idx_type c) : Array<T> (d, r < c ? r : c) { Array<T>::dimensions = dim_vector (r, c); } public: typedef T element_type; DiagArray2 (void) : Array<T> (dim_vector (0, 0)) { } DiagArray2 (octave_idx_type r, octave_idx_type c) : Array<T> (r < c ? r : c) { this->dimensions = dim_vector (r, c); } DiagArray2 (octave_idx_type r, octave_idx_type c, const T& val) : Array<T> (r < c ? r : c) { this->dimensions = dim_vector (r, c); Array<T>::fill (val); } DiagArray2 (const Array<T>& a) : Array<T> (a) { this->dimensions = dim_vector (a.length (), a.length ()); } DiagArray2 (const DiagArray2<T>& a) : Array<T> (a) { this->dimensions = a.dims (); } template <class U> DiagArray2 (const DiagArray2<U>& a) : Array<T> (a.diag ()) { this->dimensions = a.dims (); } ~DiagArray2 (void) { } DiagArray2<T>& operator = (const DiagArray2<T>& a) { if (this != &a) Array<T>::operator = (a); return *this; } octave_idx_type dim1 (void) const { return Array<T>::dimensions(0); } octave_idx_type dim2 (void) const { return Array<T>::dimensions(1); } octave_idx_type rows (void) const { return dim1 (); } octave_idx_type cols (void) const { return dim2 (); } octave_idx_type columns (void) const { return dim2 (); } octave_idx_type length (void) const { return Array<T>::length (); } octave_idx_type nelem (void) const { return dim1 () * dim2 (); } octave_idx_type numel (void) const { return nelem (); } size_t byte_size (void) const { return length () * sizeof (T); } dim_vector dims (void) const { return Array<T>::dimensions; } Array<T> diag (octave_idx_type k = 0) const; Proxy elem (octave_idx_type r, octave_idx_type c) { return Proxy (this, r, c); } Proxy checkelem (octave_idx_type r, octave_idx_type c) { if (r < 0 || c < 0 || r >= dim1 () || c >= dim2 ()) { (*current_liboctave_error_handler) ("range error in DiagArray2"); return Proxy (0, r, c); } else return Proxy (this, r, c); } Proxy operator () (octave_idx_type r, octave_idx_type c) { if (r < 0 || c < 0 || r >= dim1 () || c >= dim2 ()) { (*current_liboctave_error_handler) ("range error in DiagArray2"); return Proxy (0, r, c); } else return Proxy (this, r, c); } T elem (octave_idx_type r, octave_idx_type c) const { return (r == c) ? Array<T>::xelem (r) : T (0); } T checkelem (octave_idx_type r, octave_idx_type c) const; T operator () (octave_idx_type r, octave_idx_type c) const { #if defined (BOUNDS_CHECKING) return checkelem (r, c); #else return elem (r, c); #endif } // No checking. T& xelem (octave_idx_type r, octave_idx_type c) { static T foo (0); return (r == c) ? Array<T>::xelem (r) : foo; } T xelem (octave_idx_type r, octave_idx_type c) const { return (r == c) ? Array<T>::xelem (r) : T (0); } void resize (octave_idx_type n, octave_idx_type m); void resize (octave_idx_type n, octave_idx_type m, const T& val); DiagArray2<T> transpose (void) const; DiagArray2<T> hermitian (T (*fcn) (const T&) = 0) const; const T *data (void) const { return Array<T>::data (); } const T *fortran_vec (void) const { return Array<T>::fortran_vec (); } T *fortran_vec (void) { return Array<T>::fortran_vec (); } void print_info (std::ostream& os, const std::string& prefix) const { Array<T>::print_info (os, prefix); } }; #endif /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */