Mercurial > hg > octave-nkf
view src/symtab.h @ 7948:af10baa63915 ss-3-1-50
3.1.50 snapshot
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 18 Jul 2008 17:42:48 -0400 |
parents | 3e4c9b69069d |
children | 5bf4e2c13ed8 |
line wrap: on
line source
/* Copyright (C) 1993, 1994, 1995, 1996, 1997, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #if !defined (octave_symtab_h) #define octave_symtab_h 1 #include <deque> #include <list> #include <map> #include <set> #include <string> #include "glob-match.h" #include "regex-match.h" class tree_argument_list; #include "oct-obj.h" #include "ov.h" class OCTINTERP_API symbol_table { public: typedef int scope_id; typedef size_t context_id; class scope_id_cache { protected: typedef std::set<scope_id>::iterator set_iterator; typedef std::set<scope_id>::const_iterator set_const_iterator; // We start with 2 because we allocate 0 for the global symbols // and 1 for the top-level workspace. scope_id_cache (void) : next_available (2), in_use (), free_list () { } public: ~scope_id_cache (void) { } static scope_id alloc (void) { return instance_ok () ? instance->do_alloc () : -1; } static void free (scope_id scope) { if (instance_ok ()) return instance->do_free (scope); } static std::list<scope_id> scopes (void) { return instance_ok () ? instance->do_scopes () : std::list<scope_id> (); } static bool instance_ok (void) { bool retval = true; if (! instance) instance = new scope_id_cache (); if (! instance) { ::error ("unable to create scope_id_cache object!"); retval = false; } return retval; } private: static scope_id_cache *instance; // The next available scope not in the free list. scope_id next_available; // The set of scope IDs that are currently allocated. std::set<scope_id> in_use; // The set of scope IDs that are currently available. std::set<scope_id> free_list; scope_id do_alloc (void) { scope_id retval; set_iterator p = free_list.begin (); if (p != free_list.end ()) { retval = *p; free_list.erase (p); } else retval = next_available++; in_use.insert (retval); return retval; } void do_free (scope_id scope) { set_iterator p = in_use.find (scope); if (p != in_use.end ()) { in_use.erase (p); free_list.insert (scope); } else error ("free_scope: scope %d not found!", scope); } std::list<scope_id> do_scopes (void) const { std::list<scope_id> retval; for (set_const_iterator p = in_use.begin (); p != in_use.end (); p++) retval.push_back (*p); retval.sort (); return retval; } }; class symbol_record { public: // generic variable static const unsigned int local = 1; // varargin, argn, .nargin., .nargout. // (FIXME -- is this really used now?) static const unsigned int automatic = 2; // formal parameter static const unsigned int formal = 4; // not listed or cleared (.nargin., .nargout.) static const unsigned int hidden = 8; // inherited from parent scope; not cleared at function exit static const unsigned int inherited = 16; // global (redirects to global scope) static const unsigned int global = 32; // not cleared at function exit static const unsigned int persistent = 64; private: class symbol_record_rep { public: symbol_record_rep (const std::string& nm, const octave_value& v, unsigned int sc) : name (nm), value_stack (), storage_class (sc), count (1) { value_stack.push_back (v); } octave_value& varref (context_id context) { if (is_global ()) return symbol_table::global_varref (name); else if (is_persistent ()) return symbol_table::persistent_varref (name); else { context_id n = value_stack.size (); while (n++ <= context) value_stack.push_back (octave_value ()); return value_stack[context]; } } octave_value varval (context_id context) const { if (is_global ()) return symbol_table::global_varval (name); else if (is_persistent ()) return symbol_table::persistent_varval (name); else { if (context < value_stack.size ()) return value_stack[context]; else return octave_value (); } } void push_context (void) { if (! (is_persistent () || is_global ())) value_stack.push_back (octave_value ()); } // If pop_context returns 0, we are out of values and this element // of the symbol table should be deleted. This can happen for // functions like // // function foo (n) // if (n > 0) // foo (n-1); // else // eval ("x = 1"); // endif // endfunction // // Here, X should only exist in the final stack frame. size_t pop_context (void) { size_t retval = 1; if (! (is_persistent () || is_global ())) { value_stack.pop_back (); retval = value_stack.size (); } return retval; } void clear (void) { if (! (is_hidden () || is_inherited ())) { if (is_global ()) unmark_global (); if (is_persistent ()) { symbol_table::persistent_varref (name) = varval (xcurrent_context); unmark_persistent (); } varref (xcurrent_context) = octave_value (); } } bool is_defined (context_id context) const { return varval (context).is_defined (); } bool is_variable (context_id context) const { return (storage_class != local || is_defined (context)); } bool is_local (void) const { return storage_class & local; } bool is_automatic (void) const { return storage_class & automatic; } bool is_formal (void) const { return storage_class & formal; } bool is_hidden (void) const { return storage_class & hidden; } bool is_inherited (void) const { return storage_class & inherited; } bool is_global (void) const { return storage_class & global; } bool is_persistent (void) const { return storage_class & persistent; } void mark_local (void) { storage_class |= local; } void mark_automatic (void) { storage_class |= automatic; } void mark_formal (void) { storage_class |= formal; } void mark_hidden (void) { storage_class |= hidden; } void mark_inherited (void) { storage_class |= inherited; } void mark_global (void) { if (is_persistent ()) error ("can't make persistent variable %s global", name.c_str ()); else storage_class |= global; } void mark_persistent (void) { if (is_global ()) error ("can't make global variable %s persistent", name.c_str ()); else storage_class |= persistent; } void unmark_local (void) { storage_class &= ~local; } void unmark_automatic (void) { storage_class &= ~automatic; } void unmark_formal (void) { storage_class &= ~formal; } void unmark_hidden (void) { storage_class &= ~hidden; } void unmark_inherited (void) { storage_class &= ~inherited; } void unmark_global (void) { storage_class &= ~global; } void unmark_persistent (void) { storage_class &= ~persistent; } void init_persistent (void) { if (! is_defined (xcurrent_context)) { mark_persistent (); varref (xcurrent_context) = symbol_table::persistent_varval (name); } // FIXME -- this causes trouble with recursive calls. // else // error ("unable to declare existing variable persistent"); } void erase_persistent (void) { unmark_persistent (); symbol_table::erase_persistent (name); } symbol_record_rep *dup (void) { return new symbol_record_rep (name, varval (xcurrent_context), storage_class); } void dump (std::ostream& os, const std::string& prefix) const; std::string name; std::deque<octave_value> value_stack; unsigned int storage_class; size_t count; private: // No copying! symbol_record_rep (const symbol_record_rep& ov); symbol_record_rep& operator = (const symbol_record_rep&); }; public: symbol_record (const std::string& nm = std::string (), const octave_value& v = octave_value (), unsigned int sc = local) : rep (new symbol_record_rep (nm, v, sc)) { } symbol_record (const symbol_record& sr) : rep (sr.rep) { rep->count++; } symbol_record& operator = (const symbol_record& sr) { if (this != &sr) { rep = sr.rep; rep->count++; } return *this; } ~symbol_record (void) { if (--rep->count == 0) delete rep; } symbol_record dup (void) const { return symbol_record (rep->dup ()); } std::string name (void) const { return rep->name; } octave_value find (tree_argument_list *args, const string_vector& arg_names, octave_value_list& evaluated_args, bool& args_evaluated) const; octave_value& varref (context_id context = xcurrent_context) { return rep->varref (context); } octave_value varval (context_id context = xcurrent_context) const { return rep->varval (context); } void push_context (void) { rep->push_context (); } size_t pop_context (void) { return rep->pop_context (); } void clear (void) { rep->clear (); } bool is_defined (context_id context = xcurrent_context) const { return rep->is_defined (context); } bool is_variable (context_id context = xcurrent_context) const { return rep->is_variable (context); } bool is_local (void) const { return rep->is_local (); } bool is_automatic (void) const { return rep->is_automatic (); } bool is_formal (void) const { return rep->is_formal (); } bool is_global (void) const { return rep->is_global (); } bool is_hidden (void) const { return rep->is_hidden (); } bool is_inherited (void) const { return rep->is_inherited (); } bool is_persistent (void) const { return rep->is_persistent (); } void mark_local (void) { rep->mark_local (); } void mark_automatic (void) { rep->mark_automatic (); } void mark_formal (void) { rep->mark_formal (); } void mark_hidden (void) { rep->mark_hidden (); } void mark_inherited (void) { rep->mark_inherited (); } void mark_global (void) { rep->mark_global (); } void mark_persistent (void) { rep->mark_persistent (); } void unmark_local (void) { rep->unmark_local (); } void unmark_automatic (void) { rep->unmark_automatic (); } void unmark_formal (void) { rep->unmark_formal (); } void unmark_hidden (void) { rep->unmark_hidden (); } void unmark_inherited (void) { rep->unmark_inherited (); } void unmark_global (void) { rep->unmark_global (); } void unmark_persistent (void) { rep->unmark_persistent (); } void init_persistent (void) { rep->init_persistent (); } void erase_persistent (void) { rep->erase_persistent (); } unsigned int xstorage_class (void) const { return rep->storage_class; } void dump (std::ostream& os, const std::string& prefix = std::string ()) const { rep->dump (os, prefix); } private: symbol_record_rep *rep; symbol_record (symbol_record_rep *new_rep) : rep (new_rep) { } }; class fcn_info { public: typedef std::map<std::string, std::string> dispatch_map_type; typedef std::map<scope_id, octave_value>::const_iterator scope_val_const_iterator; typedef std::map<scope_id, octave_value>::iterator scope_val_iterator; typedef std::map<std::string, octave_value>::const_iterator str_val_const_iterator; typedef std::map<std::string, octave_value>::iterator str_val_iterator; typedef dispatch_map_type::const_iterator dispatch_map_const_iterator; typedef dispatch_map_type::iterator dispatch_map_iterator; private: class fcn_info_rep { public: fcn_info_rep (const std::string& nm) : name (nm), subfunctions (), private_functions (), class_constructors (), class_methods (), cmdline_function (), autoload_function (), function_on_path (), built_in_function (), count (1) { } octave_value load_private_function (const std::string& dir_name); octave_value load_class_constructor (void); octave_value load_class_method (const std::string& dispatch_type); octave_value find (tree_argument_list *args, const string_vector& arg_names, octave_value_list& evaluated_args, bool& args_evaluated); octave_value find_method (const std::string& dispatch_type); octave_value find_autoload (void); octave_value find_user_function (void); bool is_user_function_defined (void) const { return function_on_path.is_defined (); } octave_value find_function (void) { octave_value_list args; return find_function (args); } octave_value find_function (const octave_value_list& args) { string_vector arg_names; octave_value_list evaluated_args = args; bool args_evaluated = false; return find (0, arg_names, evaluated_args, args_evaluated); } void lock_subfunction (scope_id scope) { scope_val_iterator p = subfunctions.find (scope); if (p != subfunctions.end ()) p->second.lock (); } void unlock_subfunction (scope_id scope) { scope_val_iterator p = subfunctions.find (scope); if (p != subfunctions.end ()) p->second.unlock (); } std::pair<std::string, octave_value> subfunction_defined_in_scope (scope_id scope) const { scope_val_const_iterator p = subfunctions.find (scope); return p == subfunctions.end () ? std::pair<std::string, octave_value> () : std::pair<std::string, octave_value> (name, p->second); } void erase_subfunction (scope_id scope) { scope_val_iterator p = subfunctions.find (scope); if (p != subfunctions.end ()) subfunctions.erase (p); } void install_cmdline_function (const octave_value& f) { cmdline_function = f; } void install_subfunction (const octave_value& f, scope_id scope) { subfunctions[scope] = f; } void install_user_function (const octave_value& f) { function_on_path = f; } void install_built_in_function (const octave_value& f) { built_in_function = f; } template <class T> void clear_unlocked (std::map<T, octave_value>& map) { typename std::map<T, octave_value>::iterator p = map.begin (); while (p != map.end ()) { if (p->second.islocked ()) p++; else map.erase (p++); } } void clear_cmdline_function (void) { if (! cmdline_function.islocked ()) cmdline_function = octave_value (); } void clear_autoload_function (void) { if (! autoload_function.islocked ()) autoload_function = octave_value (); } // FIXME -- should this also clear the cmdline and other "user // defined" functions? void clear_user_function (void) { if (! function_on_path.islocked ()) { function_on_path.erase_subfunctions (); function_on_path = octave_value (); } } void clear_mex_function (void) { if (function_on_path.is_mex_function ()) clear_user_function (); } void clear (void) { clear_unlocked (subfunctions); clear_unlocked (private_functions); clear_unlocked (class_constructors); clear_unlocked (class_methods); clear_cmdline_function (); clear_autoload_function (); clear_user_function (); } void add_dispatch (const std::string& type, const std::string& fname) { dispatch_map[type] = fname; } void clear_dispatch (const std::string& type) { dispatch_map_iterator p = dispatch_map.find (type); if (p != dispatch_map.end ()) dispatch_map.erase (p); } void print_dispatch (std::ostream& os) const; std::string help_for_dispatch (void) const; dispatch_map_type get_dispatch (void) const { return dispatch_map; } void dump (std::ostream& os, const std::string& prefix) const; std::string name; // Scope id to function object. std::map<scope_id, octave_value> subfunctions; // Directory name to function object. std::map<std::string, octave_value> private_functions; // Class name to function object. std::map<std::string, octave_value> class_constructors; // Dispatch type to function object. std::map<std::string, octave_value> class_methods; // Legacy dispatch map (dispatch type name to function name). dispatch_map_type dispatch_map; octave_value cmdline_function; octave_value autoload_function; octave_value function_on_path; octave_value built_in_function; size_t count; private: // No copying! fcn_info_rep (const fcn_info_rep&); fcn_info_rep& operator = (const fcn_info_rep&); }; public: fcn_info (const std::string& nm = std::string ()) : rep (new fcn_info_rep (nm)) { } fcn_info (const fcn_info& ov) : rep (ov.rep) { rep->count++; } fcn_info& operator = (const fcn_info& ov) { if (this != &ov) { rep = ov.rep; rep->count++; } return *this; } ~fcn_info (void) { if (--rep->count == 0) delete rep; } octave_value find (tree_argument_list *args, const string_vector& arg_names, octave_value_list& evaluated_args, bool& args_evaluated); octave_value find_method (const std::string& dispatch_type) const { return rep->find_method (dispatch_type); } octave_value find_built_in_function (void) const { return rep->built_in_function; } octave_value find_autoload (void) { return rep->find_autoload (); } octave_value find_user_function (void) { return rep->find_user_function (); } bool is_user_function_defined (void) const { return rep->is_user_function_defined (); } octave_value find_function (void) { return rep->find_function (); } octave_value find_function (const octave_value_list& args) { return rep->find_function (args); } void lock_subfunction (scope_id scope) { rep->lock_subfunction (scope); } void unlock_subfunction (scope_id scope) { rep->unlock_subfunction (scope); } std::pair<std::string, octave_value> subfunction_defined_in_scope (scope_id scope = xcurrent_scope) const { return rep->subfunction_defined_in_scope (scope); } void erase_subfunction (scope_id scope) { rep->erase_subfunction (scope); } void install_cmdline_function (const octave_value& f) { rep->install_cmdline_function (f); } void install_subfunction (const octave_value& f, scope_id scope) { rep->install_subfunction (f, scope); } void install_user_function (const octave_value& f) { rep->install_user_function (f); } void install_built_in_function (const octave_value& f) { rep->install_built_in_function (f); } void clear (void) { rep->clear (); } void clear_user_function (void) { rep->clear_user_function (); } void clear_mex_function (void) { rep->clear_mex_function (); } void add_dispatch (const std::string& type, const std::string& fname) { rep->add_dispatch (type, fname); } void clear_dispatch (const std::string& type) { rep->clear_dispatch (type); } void print_dispatch (std::ostream& os) const { rep->print_dispatch (os); } std::string help_for_dispatch (void) const { return rep->help_for_dispatch (); } dispatch_map_type get_dispatch (void) const { return rep->get_dispatch (); } void dump (std::ostream& os, const std::string& prefix = std::string ()) const { rep->dump (os, prefix); } private: fcn_info_rep *rep; }; static scope_id global_scope (void) { return xglobal_scope; } static scope_id top_scope (void) { return xtop_scope; } static scope_id current_scope (void) { return xcurrent_scope; } static context_id current_context (void) { return xcurrent_context; } // We use parent_scope to handle parsing subfunctions. static scope_id parent_scope (void) { return xparent_scope; } static scope_id alloc_scope (void) { return scope_id_cache::alloc (); } static void set_scope (scope_id scope) { if (scope == xglobal_scope) error ("can't set scope to global"); else if (scope != xcurrent_scope) { all_instances_iterator p = all_instances.find (scope); if (p == all_instances.end ()) { symbol_table *inst = new symbol_table (); if (inst) all_instances[scope] = instance = inst; } else instance = p->second; xcurrent_scope = scope; xcurrent_context = 0; } } static void set_scope_and_context (scope_id scope, context_id context) { if (scope == xglobal_scope) error ("can't set scope to global"); else { if (scope != xcurrent_scope) { all_instances_iterator p = all_instances.find (scope); if (p == all_instances.end ()) error ("scope not found!"); else { instance = p->second; xcurrent_scope = scope; } } if (! error_state) xcurrent_context = context; } } static void push_scope (scope_id scope) { if (scope_stack.empty ()) scope_stack.push_front (xtop_scope); set_scope (scope); scope_stack.push_front (scope); } static void pop_scope (void) { scope_stack.pop_front (); set_scope (scope_stack[0]); } static void pop_scope (void *) { pop_scope (); } static void reset_scope (void) { scope_stack.clear (); scope_stack.push_front (xtop_scope); set_scope (xtop_scope); } static void set_parent_scope (scope_id scope) { xparent_scope = scope; } static void reset_parent_scope (void) { set_parent_scope (-1); } static void erase_scope (scope_id scope) { assert (scope != xglobal_scope); all_instances_iterator p = all_instances.find (scope); if (p != all_instances.end ()) { delete p->second; all_instances.erase (p); free_scope (scope); } } static void erase_subfunctions_in_scope (scope_id scope) { for (fcn_table_iterator q = fcn_table.begin (); q != fcn_table.end (); q++) q->second.erase_subfunction (scope); } static scope_id dup_scope (scope_id scope) { scope_id retval = -1; symbol_table *inst = get_instance (scope); if (inst) { scope_id new_scope = alloc_scope (); symbol_table *new_symbol_table = new symbol_table (); if (new_symbol_table) { all_instances[new_scope] = new_symbol_table; inst->do_dup_scope (*new_symbol_table); retval = new_scope; } } return retval; } static std::list<scope_id> scopes (void) { return scope_id_cache::scopes (); } static symbol_record find_symbol (const std::string& name, scope_id scope = xcurrent_scope) { symbol_table *inst = get_instance (scope); return inst ? inst->do_find_symbol (name) : symbol_record (); } static void inherit (scope_id scope, scope_id donor_scope, context_id donor_context) { symbol_table *inst = get_instance (scope); if (inst) inst->do_inherit (donor_scope, donor_context); } static bool at_top_level (void) { return xcurrent_scope == xtop_scope; } // Find a value corresponding to the given name in the table. static octave_value find (const std::string& name, tree_argument_list *args, const string_vector& arg_names, octave_value_list& evaluated_args, bool& args_evaluated, bool skip_variables = false); // Insert a new name in the table. static symbol_record& insert (const std::string& name) { static symbol_record foobar; symbol_table *inst = get_instance (xcurrent_scope); return inst ? inst->do_insert (name) : foobar; } static octave_value& varref (const std::string& name, scope_id scope = xcurrent_scope, context_id context = xcurrent_context) { static octave_value foobar; symbol_table *inst = get_instance (scope); return inst ? inst->do_varref (name, context) : foobar; } static octave_value varval (const std::string& name, scope_id scope = xcurrent_scope, context_id context = xcurrent_context) { symbol_table *inst = get_instance (scope); return inst ? inst->do_varval (name, context) : octave_value (); } static octave_value& global_varref (const std::string& name) { global_table_iterator p = global_table.find (name); return (p == global_table.end ()) ? global_table[name] : p->second; } static octave_value global_varval (const std::string& name) { global_table_const_iterator p = global_table.find (name); return (p != global_table.end ()) ? p->second : octave_value (); } static octave_value& persistent_varref (const std::string& name) { static octave_value foobar; symbol_table *inst = get_instance (xcurrent_scope); return inst ? inst->do_persistent_varref (name) : foobar; } static octave_value persistent_varval (const std::string& name) { symbol_table *inst = get_instance (xcurrent_scope); return inst ? inst->do_persistent_varval (name) : octave_value (); } static void erase_persistent (const std::string& name) { symbol_table *inst = get_instance (xcurrent_scope); if (inst) inst->do_erase_persistent (name); } static bool is_variable (const std::string& name) { symbol_table *inst = get_instance (xcurrent_scope); return inst ? inst->do_is_variable (name) : false; } static bool is_built_in_function_name (const std::string& name) { octave_value val = find_built_in_function (name); return val.is_defined (); } static octave_value find_method (const std::string& name, const std::string& dispatch_type) { fcn_table_const_iterator p = fcn_table.find (name); if (p != fcn_table.end ()) return p->second.find_method (dispatch_type); else { fcn_info finfo (name); octave_value fcn = finfo.find_method (dispatch_type); if (fcn.is_defined ()) fcn_table[name] = finfo; return fcn; } } static octave_value find_built_in_function (const std::string& name) { fcn_table_const_iterator p = fcn_table.find (name); return (p != fcn_table.end ()) ? p->second.find_built_in_function () : octave_value (); } static octave_value find_autoload (const std::string& name) { fcn_table_iterator p = fcn_table.find (name); return (p != fcn_table.end ()) ? p->second.find_autoload () : octave_value (); } static octave_value find_function (const std::string& name, tree_argument_list *args, const string_vector& arg_names, octave_value_list& evaluated_args, bool& args_evaluated); static octave_value find_user_function (const std::string& name) { fcn_table_iterator p = fcn_table.find (name); return (p != fcn_table.end ()) ? p->second.find_user_function () : octave_value (); } static octave_value find_function (const std::string& name) { octave_value_list evaluated_args; return find_function (name, evaluated_args); } static octave_value find_function (const std::string& name, const octave_value_list& args) { string_vector arg_names; octave_value_list evaluated_args = args; bool args_evaluated = ! args.empty (); return find_function (name, 0, arg_names, evaluated_args, args_evaluated); } static void install_cmdline_function (const std::string& name, const octave_value& fcn) { fcn_table_iterator p = fcn_table.find (name); if (p != fcn_table.end ()) { fcn_info& finfo = p->second; finfo.install_cmdline_function (fcn); } else { fcn_info finfo (name); finfo.install_cmdline_function (fcn); fcn_table[name] = finfo; } } static void install_subfunction (const std::string& name, const octave_value& fcn, scope_id scope = xparent_scope) { fcn_table_iterator p = fcn_table.find (name); if (p != fcn_table.end ()) { fcn_info& finfo = p->second; finfo.install_subfunction (fcn, scope); } else { fcn_info finfo (name); finfo.install_subfunction (fcn, scope); fcn_table[name] = finfo; } } static void install_user_function (const std::string& name, const octave_value& fcn) { fcn_table_iterator p = fcn_table.find (name); if (p != fcn_table.end ()) { fcn_info& finfo = p->second; finfo.install_user_function (fcn); } else { fcn_info finfo (name); finfo.install_user_function (fcn); fcn_table[name] = finfo; } } static void install_built_in_function (const std::string& name, const octave_value& fcn) { fcn_table_iterator p = fcn_table.find (name); if (p != fcn_table.end ()) { fcn_info& finfo = p->second; finfo.install_built_in_function (fcn); } else { fcn_info finfo (name); finfo.install_built_in_function (fcn); fcn_table[name] = finfo; } } static void clear (const std::string& name) { clear_variable (name); } static void clear_all (void) { clear_variables (); clear_functions (); } static void clear_variables (void) { symbol_table *inst = get_instance (xcurrent_scope); if (inst) inst->do_clear_variables (); } // For unwind_protect. static void clear_variables (void *) { clear_variables (); } static void clear_functions (void) { for (fcn_table_iterator p = fcn_table.begin (); p != fcn_table.end (); p++) p->second.clear (); } static void clear_function (const std::string& name) { clear_user_function (name); } static void clear_global (const std::string& name) { symbol_table *inst = get_instance (xcurrent_scope); if (inst) inst->do_clear_global (name); } static void clear_variable (const std::string& name) { symbol_table *inst = get_instance (xcurrent_scope); if (inst) inst->do_clear_variable (name); } static void clear_symbol (const std::string& name) { // FIXME -- are we supposed to do both here? clear_variable (name); clear_function (name); } static void clear_function_pattern (const std::string& pat) { glob_match pattern (pat); for (fcn_table_iterator p = fcn_table.begin (); p != fcn_table.end (); p++) { if (pattern.match (p->first)) p->second.clear_user_function (); } } static void clear_global_pattern (const std::string& pat) { symbol_table *inst = get_instance (xcurrent_scope); if (inst) inst->do_clear_global_pattern (pat); } static void clear_variable_pattern (const std::string& pat) { symbol_table *inst = get_instance (xcurrent_scope); if (inst) inst->do_clear_variable_pattern (pat); } static void clear_variable_regexp (const std::string& pat) { symbol_table *inst = get_instance (xcurrent_scope); if (inst) inst->do_clear_variable_regexp (pat); } static void clear_symbol_pattern (const std::string& pat) { // FIXME -- are we supposed to do both here? clear_variable_pattern (pat); clear_function_pattern (pat); } static void clear_user_function (const std::string& name) { fcn_table_iterator p = fcn_table.find (name); if (p != fcn_table.end ()) { fcn_info& finfo = p->second; finfo.clear_user_function (); } // FIXME -- is this necessary, or even useful? // else // error ("clear: no such function `%s'", name.c_str ()); } static void clear_mex_functions (void) { for (fcn_table_iterator p = fcn_table.begin (); p != fcn_table.end (); p++) { fcn_info& finfo = p->second; finfo.clear_mex_function (); } } static void alias_built_in_function (const std::string& alias, const std::string& name) { octave_value fcn = find_built_in_function (name); if (fcn.is_defined ()) { fcn_info finfo (alias); finfo.install_built_in_function (fcn); fcn_table[alias] = finfo; } else panic ("alias: `%s' is undefined", name.c_str ()); } static void add_dispatch (const std::string& name, const std::string& type, const std::string& fname) { fcn_table_iterator p = fcn_table.find (name); if (p != fcn_table.end ()) { fcn_info& finfo = p->second; finfo.add_dispatch (type, fname); } else { fcn_info finfo (name); finfo.add_dispatch (type, fname); fcn_table[name] = finfo; } } static void clear_dispatch (const std::string& name, const std::string& type) { fcn_table_iterator p = fcn_table.find (name); if (p != fcn_table.end ()) { fcn_info& finfo = p->second; finfo.clear_dispatch (type); } } static void print_dispatch (std::ostream& os, const std::string& name) { fcn_table_iterator p = fcn_table.find (name); if (p != fcn_table.end ()) { fcn_info& finfo = p->second; finfo.print_dispatch (os); } } static fcn_info::dispatch_map_type get_dispatch (const std::string& name) { fcn_info::dispatch_map_type retval; fcn_table_iterator p = fcn_table.find (name); if (p != fcn_table.end ()) { fcn_info& finfo = p->second; retval = finfo.get_dispatch (); } return retval; } static std::string help_for_dispatch (const std::string& name) { std::string retval; fcn_table_iterator p = fcn_table.find (name); if (p != fcn_table.end ()) { fcn_info& finfo = p->second; retval = finfo.help_for_dispatch (); } return retval; } static void push_context (void) { if (xcurrent_scope == xglobal_scope || xcurrent_scope == xtop_scope) error ("invalid call to xymtab::push_context"); else { symbol_table *inst = get_instance (xcurrent_scope); if (inst) inst->do_push_context (); } } static void pop_context (void) { if (xcurrent_scope == xglobal_scope || xcurrent_scope == xtop_scope) error ("invalid call to xymtab::pop_context"); else { symbol_table *inst = get_instance (xcurrent_scope); if (inst) inst->do_pop_context (); } } // For unwind_protect. static void pop_context (void *) { pop_context (); } static void mark_hidden (const std::string& name) { symbol_table *inst = get_instance (xcurrent_scope); if (inst) inst->do_mark_hidden (name); } static void mark_global (const std::string& name) { symbol_table *inst = get_instance (xcurrent_scope); if (inst) inst->do_mark_global (name); } static std::list<symbol_record> all_variables (scope_id scope = xcurrent_scope, context_id context = xcurrent_context, bool defined_only = true) { symbol_table *inst = get_instance (scope); return inst ? inst->do_all_variables (context, defined_only) : std::list<symbol_record> (); } static std::list<symbol_record> glob (const std::string& pattern) { symbol_table *inst = get_instance (xcurrent_scope); return inst ? inst->do_glob (pattern) : std::list<symbol_record> (); } static std::list<symbol_record> regexp (const std::string& pattern) { symbol_table *inst = get_instance (xcurrent_scope); return inst ? inst->do_regexp (pattern) : std::list<symbol_record> (); } static std::list<symbol_record> glob_variables (const std::string& pattern) { symbol_table *inst = get_instance (xcurrent_scope); return inst ? inst->do_glob (pattern, true) : std::list<symbol_record> (); } static std::list<symbol_record> regexp_variables (const std::string& pattern) { symbol_table *inst = get_instance (xcurrent_scope); return inst ? inst->do_regexp (pattern, true) : std::list<symbol_record> (); } static std::list<symbol_record> glob_global_variables (const std::string& pattern) { std::list<symbol_record> retval; glob_match pat (pattern); for (global_table_const_iterator p = global_table.begin (); p != global_table.end (); p++) { // We generate a list of symbol_record objects so that // the results from glob_variables and glob_global_variables // may be handled the same way. if (pat.match (p->first)) retval.push_back (symbol_record (p->first, p->second, symbol_record::global)); } return retval; } static std::list<symbol_record> regexp_global_variables (const std::string& pattern) { std::list<symbol_record> retval; regex_match pat (pattern); for (global_table_const_iterator p = global_table.begin (); p != global_table.end (); p++) { // We generate a list of symbol_record objects so that // the results from regexp_variables and regexp_global_variables // may be handled the same way. if (pat.match (p->first)) retval.push_back (symbol_record (p->first, p->second, symbol_record::global)); } return retval; } static std::list<symbol_record> glob_variables (const string_vector& patterns) { std::list<symbol_record> retval; size_t len = patterns.length (); for (size_t i = 0; i < len; i++) { std::list<symbol_record> tmp = glob_variables (patterns[i]); retval.insert (retval.begin (), tmp.begin (), tmp.end ()); } return retval; } static std::list<symbol_record> regexp_variables (const string_vector& patterns) { std::list<symbol_record> retval; size_t len = patterns.length (); for (size_t i = 0; i < len; i++) { std::list<symbol_record> tmp = regexp_variables (patterns[i]); retval.insert (retval.begin (), tmp.begin (), tmp.end ()); } return retval; } static std::list<std::string> user_function_names (void) { std::list<std::string> retval; for (fcn_table_iterator p = fcn_table.begin (); p != fcn_table.end (); p++) { if (p->second.is_user_function_defined ()) retval.push_back (p->first); } if (! retval.empty ()) retval.sort (); return retval; } static std::list<std::string> global_variable_names (void) { std::list<std::string> retval; for (global_table_const_iterator p = global_table.begin (); p != global_table.end (); p++) retval.push_back (p->first); retval.sort (); return retval; } static std::list<std::string> top_level_variable_names (void) { symbol_table *inst = get_instance (xtop_scope); return inst ? inst->do_variable_names () : std::list<std::string> (); } static std::list<std::string> variable_names (void) { symbol_table *inst = get_instance (xcurrent_scope); return inst ? inst->do_variable_names () : std::list<std::string> (); } static std::list<std::string> built_in_function_names (void) { std::list<std::string> retval; for (fcn_table_const_iterator p = fcn_table.begin (); p != fcn_table.end (); p++) { octave_value fcn = p->second.find_built_in_function (); if (fcn.is_defined ()) retval.push_back (p->first); } if (! retval.empty ()) retval.sort (); return retval; } static bool is_local_variable (const std::string& name) { if (xcurrent_scope == xglobal_scope) return false; else { symbol_table *inst = get_instance (xcurrent_scope); return inst ? inst->do_is_local_variable (name) : false; } } static bool is_global (const std::string& name) { if (xcurrent_scope == xglobal_scope) return true; else { symbol_table *inst = get_instance (xcurrent_scope); return inst ? inst->do_is_global (name) : false; } } static void dump (std::ostream& os, scope_id scope = xcurrent_scope); static void dump_global (std::ostream& os); static void dump_functions (std::ostream& os); static void cache_name (scope_id scope, const std::string& name) { symbol_table *inst = get_instance (scope, false); if (inst) inst->do_cache_name (name); } static void lock_subfunctions (scope_id scope = xcurrent_scope) { for (fcn_table_iterator p = fcn_table.begin (); p != fcn_table.end (); p++) p->second.lock_subfunction (scope); } static void unlock_subfunctions (scope_id scope = xcurrent_scope) { for (fcn_table_iterator p = fcn_table.begin (); p != fcn_table.end (); p++) p->second.unlock_subfunction (scope); } static void free_scope (scope_id scope) { if (scope == xglobal_scope || scope == xtop_scope) error ("can't free global or top-level scopes!"); else symbol_table::scope_id_cache::free (scope); } private: typedef std::map<std::string, symbol_record>::const_iterator table_const_iterator; typedef std::map<std::string, symbol_record>::iterator table_iterator; typedef std::map<std::string, octave_value>::const_iterator global_table_const_iterator; typedef std::map<std::string, octave_value>::iterator global_table_iterator; typedef std::map<std::string, octave_value>::const_iterator persistent_table_const_iterator; typedef std::map<std::string, octave_value>::iterator persistent_table_iterator; typedef std::map<scope_id, symbol_table*>::const_iterator all_instances_const_iterator; typedef std::map<scope_id, symbol_table*>::iterator all_instances_iterator; typedef std::map<std::string, fcn_info>::const_iterator fcn_table_const_iterator; typedef std::map<std::string, fcn_info>::iterator fcn_table_iterator; // Name for this table (usually the file name of the function // corresponding to the scope); std::string table_name; // Map from symbol names to symbol info. std::map<std::string, symbol_record> table; // Map from names of global variables to values. static std::map<std::string, octave_value> global_table; // Map from names of persistent variables to values. std::map<std::string, octave_value> persistent_table; // Pointer to symbol table for current scope (variables only). static symbol_table *instance; // Map from scope id to symbol table instances. static std::map<scope_id, symbol_table*> all_instances; // Map from function names to function info (subfunctions, private // functions, class constructors, class methods, etc.) static std::map<std::string, fcn_info> fcn_table; static const scope_id xglobal_scope; static const scope_id xtop_scope; static scope_id xcurrent_scope; // We use parent_scope to handle parsing subfunctions. static scope_id xparent_scope; static context_id xcurrent_context; static std::deque<scope_id> scope_stack; symbol_table (void) : table_name (), table () { } ~symbol_table (void) { } static symbol_table *get_instance (scope_id scope, bool create = true) { symbol_table *retval = 0; bool ok = true; if (scope != xglobal_scope) { if (scope == xcurrent_scope) { if (! instance && create) { symbol_table *inst = new symbol_table (); if (inst) { all_instances[scope] = instance = inst; if (scope == xtop_scope) instance->do_cache_name ("top-level"); } } if (! instance) ok = false; retval = instance; } else { all_instances_iterator p = all_instances.find (scope); if (p == all_instances.end ()) { if (create) { retval = new symbol_table (); if (retval) all_instances[scope] = retval; else ok = false; } else ok = false; } else retval = p->second; } } if (! ok) error ("unable to %s symbol_table object for scope %d!", create ? "create" : "find", scope); return retval; } void insert_symbol_record (const symbol_record& sr) { table[sr.name ()] = sr; } void do_dup_scope (symbol_table& new_symbol_table) const { for (table_const_iterator p = table.begin (); p != table.end (); p++) new_symbol_table.insert_symbol_record (p->second.dup ()); } symbol_record do_find_symbol (const std::string& name) { table_iterator p = table.find (name); if (p == table.end ()) return do_insert (name); else return p->second; } void do_inherit (scope_id donor_scope, context_id donor_context) { for (table_iterator p = table.begin (); p != table.end (); p++) { symbol_record& sr = p->second; std::string nm = sr.name (); if (! (sr.is_automatic () || sr.is_formal () || nm == "__retval__")) { octave_value val = symbol_table::varval (nm, donor_scope, donor_context); if (val.is_defined ()) { // Currently, inherit is always called when creating a // new table, so it only makes sense to copy values into // the base context (== 0), but maybe the context // should be passed in as a parameter instead? sr.varref (0) = val; sr.mark_inherited (); } } } } octave_value do_find (const std::string& name, tree_argument_list *args, const string_vector& arg_names, octave_value_list& evaluated_args, bool& args_evaluated, bool skip_variables); symbol_record& do_insert (const std::string& name) { table_iterator p = table.find (name); return p == table.end () ? (table[name] = symbol_record (name)) : p->second; } octave_value& do_varref (const std::string& name, context_id context) { table_iterator p = table.find (name); if (p == table.end ()) { symbol_record& sr = do_insert (name); return sr.varref (context); } else return p->second.varref (context); } octave_value do_varval (const std::string& name, context_id context) const { table_const_iterator p = table.find (name); return (p != table.end ()) ? p->second.varval (context) : octave_value (); } octave_value& do_persistent_varref (const std::string& name) { persistent_table_iterator p = persistent_table.find (name); return (p == persistent_table.end ()) ? persistent_table[name] : p->second; } octave_value do_persistent_varval (const std::string& name) { persistent_table_const_iterator p = persistent_table.find (name); return (p != persistent_table.end ()) ? p->second : octave_value (); } void do_erase_persistent (const std::string& name) { persistent_table_iterator p = persistent_table.find (name); if (p != persistent_table.end ()) persistent_table.erase (p); } bool do_is_variable (const std::string& name) const { bool retval = false; table_const_iterator p = table.find (name); if (p != table.end ()) { const symbol_record& sr = p->second; retval = sr.is_variable (); } return retval; } void do_push_context (void) { for (table_iterator p = table.begin (); p != table.end (); p++) p->second.push_context (); } void do_pop_context (void) { for (table_iterator p = table.begin (); p != table.end (); ) { if (p->second.pop_context () == 0) table.erase (p++); else p++; } } void do_clear_variables (void) { for (table_iterator p = table.begin (); p != table.end (); p++) p->second.clear (); } void do_clear_global (const std::string& name) { table_iterator p = table.find (name); if (p != table.end ()) { symbol_record& sr = p->second; if (sr.is_global ()) { global_table_iterator q = global_table.find (name); if (q != global_table.end ()) global_table.erase (q); sr.unmark_global (); } } } void do_clear_variable (const std::string& name) { table_iterator p = table.find (name); if (p != table.end ()) p->second.clear (); } void do_clear_global_pattern (const std::string& pat) { glob_match pattern (pat); for (table_iterator p = table.begin (); p != table.end (); p++) { symbol_record& sr = p->second; if (sr.is_global ()) { if (pattern.match (sr.name ())) { global_table_iterator q = global_table.find (sr.name ()); if (q != global_table.end ()) global_table.erase (q); sr.unmark_global (); } } } } void do_clear_variable_pattern (const std::string& pat) { glob_match pattern (pat); for (table_iterator p = table.begin (); p != table.end (); p++) { symbol_record& sr = p->second; if (sr.is_defined () || sr.is_global ()) { if (pattern.match (sr.name ())) sr.clear (); } } } void do_clear_variable_regexp (const std::string& pat) { regex_match pattern (pat); for (table_iterator p = table.begin (); p != table.end (); p++) { symbol_record& sr = p->second; if (sr.is_defined () || sr.is_global ()) { if (pattern.match (sr.name ())) sr.clear (); } } } void do_mark_hidden (const std::string& name) { table_iterator p = table.find (name); if (p != table.end ()) p->second.mark_hidden (); } void do_mark_global (const std::string& name) { table_iterator p = table.find (name); if (p != table.end ()) p->second.mark_global (); } std::list<symbol_record> do_all_variables (context_id context, bool defined_only) const { std::list<symbol_record> retval; for (table_const_iterator p = table.begin (); p != table.end (); p++) { const symbol_record& sr = p->second; if (defined_only && ! sr.is_defined (context)) continue; retval.push_back (sr); } return retval; } std::list<symbol_record> do_glob (const std::string& pattern, bool vars_only = false) const { std::list<symbol_record> retval; glob_match pat (pattern); for (table_const_iterator p = table.begin (); p != table.end (); p++) { if (pat.match (p->first)) { const symbol_record& sr = p->second; if (vars_only && ! sr.is_variable ()) continue; retval.push_back (sr); } } return retval; } std::list<symbol_record> do_regexp (const std::string& pattern, bool vars_only = false) const { std::list<symbol_record> retval; regex_match pat (pattern); for (table_const_iterator p = table.begin (); p != table.end (); p++) { if (pat.match (p->first)) { const symbol_record& sr = p->second; if (vars_only && ! sr.is_variable ()) continue; retval.push_back (sr); } } return retval; } std::list<std::string> do_variable_names (void) { std::list<std::string> retval; for (table_const_iterator p = table.begin (); p != table.end (); p++) retval.push_back (p->first); retval.sort (); return retval; } static std::map<std::string, octave_value> subfunctions_defined_in_scope (scope_id scope = xcurrent_scope) { std::map<std::string, octave_value> retval; for (fcn_table_const_iterator p = fcn_table.begin (); p != fcn_table.end (); p++) { std::pair<std::string, octave_value> tmp = p->second.subfunction_defined_in_scope (scope); std::string nm = tmp.first; if (! nm.empty ()) retval[nm] = tmp.second; } return retval; } bool do_is_local_variable (const std::string& name) const { table_const_iterator p = table.find (name); return (p != table.end () && ! p->second.is_global () && p->second.is_defined ()); } bool do_is_global (const std::string& name) const { table_const_iterator p = table.find (name); return p != table.end () && p->second.is_global (); } void do_dump (std::ostream& os); void do_cache_name (const std::string& name) { table_name = name; } }; extern bool out_of_date_check (octave_value& function); #endif /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */