Mercurial > hg > octave-nkf
view libinterp/corefcn/fft.cc @ 19069:afab3a2f57e7
doc: Update docstring for exist().
* variables.cc (Fexist): Update documentation string.
author | Rik <rik@octave.org> |
---|---|
date | Sun, 29 Jun 2014 12:58:22 -0700 |
parents | 175b392e91fe |
children | 4197fc428c7d |
line wrap: on
line source
/* Copyright (C) 1997-2013 David Bateman Copyright (C) 1996-1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "lo-mappers.h" #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" #if defined (HAVE_FFTW) #define FFTSRC "@sc{fftw}" #else #define FFTSRC "@sc{fftpack}" #endif static octave_value do_fft (const octave_value_list &args, const char *fcn, int type) { octave_value retval; int nargin = args.length (); if (nargin < 1 || nargin > 3) { print_usage (); return retval; } octave_value arg = args(0); dim_vector dims = arg.dims (); octave_idx_type n_points = -1; int dim = -1; if (nargin > 1) { if (! args(1).is_empty ()) { double dval = args(1).double_value (); if (xisnan (dval)) error ("%s: number of points (N) cannot be NaN", fcn); else { n_points = NINTbig (dval); if (n_points < 0) error ("%s: number of points (N) must be greater than zero", fcn); } } } if (error_state) return retval; if (nargin > 2) { double dval = args(2).double_value (); if (xisnan (dval)) error ("%s: DIM cannot be NaN", fcn); else if (dval < 1 || dval > dims.length ()) error ("%s: DIM must be a valid dimension along which to perform FFT", fcn); else // to be safe, cast it back to int since dim is an int dim = NINT (dval) - 1; } if (error_state) return retval; for (octave_idx_type i = 0; i < dims.length (); i++) if (dims(i) < 0) return retval; if (dim < 0) { for (octave_idx_type i = 0; i < dims.length (); i++) if (dims(i) > 1) { dim = i; break; } // And if the first argument is scalar? if (dim < 0) dim = 1; } if (n_points < 0) n_points = dims (dim); else dims (dim) = n_points; if (dims.any_zero () || n_points == 0) { if (arg.is_single_type ()) return octave_value (FloatNDArray (dims)); else return octave_value (NDArray (dims)); } if (arg.is_single_type ()) { if (arg.is_real_type ()) { FloatNDArray nda = arg.float_array_value (); if (! error_state) { nda.resize (dims, 0.0); retval = (type != 0 ? nda.ifourier (dim) : nda.fourier (dim)); } } else { FloatComplexNDArray cnda = arg.float_complex_array_value (); if (! error_state) { cnda.resize (dims, 0.0); retval = (type != 0 ? cnda.ifourier (dim) : cnda.fourier (dim)); } } } else { if (arg.is_real_type ()) { NDArray nda = arg.array_value (); if (! error_state) { nda.resize (dims, 0.0); retval = (type != 0 ? nda.ifourier (dim) : nda.fourier (dim)); } } else if (arg.is_complex_type ()) { ComplexNDArray cnda = arg.complex_array_value (); if (! error_state) { cnda.resize (dims, 0.0); retval = (type != 0 ? cnda.ifourier (dim) : cnda.fourier (dim)); } } else { gripe_wrong_type_arg (fcn, arg); } } return retval; } /* %!assert (fft ([]), []) %!assert (fft (zeros (10,0)), zeros (10,0)) %!assert (fft (zeros (0,10)), zeros (0,10)) %!assert (fft (0), 0) %!assert (fft (1), 1) %!assert (fft (ones (2,2)), [2,2; 0,0]) %!assert (fft (eye (2,2)), [1,1; 1,-1]) %!assert (fft (single ([])), single ([])) %!assert (fft (zeros (10,0,"single")), zeros (10,0,"single")) %!assert (fft (zeros (0,10,"single")), zeros (0,10,"single")) %!assert (fft (single (0)), single (0)) %!assert (fft (single (1)), single (1)) %!assert (fft (ones (2,2,"single")), single ([2,2; 0,0])) %!assert (fft (eye (2,2,"single")), single ([1,1; 1,-1])) %!error (fft ()) */ DEFUN (fft, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} fft (@var{x})\n\ @deftypefnx {Built-in Function} {} fft (@var{x}, @var{n})\n\ @deftypefnx {Built-in Function} {} fft (@var{x}, @var{n}, @var{dim})\n\ Compute the discrete Fourier transform of @var{A} using\n\ a Fast Fourier Transform (FFT) algorithm.\n\ \n\ The FFT is calculated along the first non-singleton dimension of the\n\ array. Thus if @var{x} is a matrix, @code{fft (@var{x})} computes the\n\ FFT for each column of @var{x}.\n\ \n\ If called with two arguments, @var{n} is expected to be an integer\n\ specifying the number of elements of @var{x} to use, or an empty\n\ matrix to specify that its value should be ignored. If @var{n} is\n\ larger than the dimension along which the FFT is calculated, then\n\ @var{x} is resized and padded with zeros. Otherwise, if @var{n} is\n\ smaller than the dimension along which the FFT is calculated, then\n\ @var{x} is truncated.\n\ \n\ If called with three arguments, @var{dim} is an integer specifying the\n\ dimension of the matrix along which the FFT is performed\n\ @seealso{ifft, fft2, fftn, fftw}\n\ @end deftypefn") { return do_fft (args, "fft", 0); } DEFUN (ifft, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} ifft (@var{x})\n\ @deftypefnx {Built-in Function} {} ifft (@var{x}, @var{n})\n\ @deftypefnx {Built-in Function} {} ifft (@var{x}, @var{n}, @var{dim})\n\ Compute the inverse discrete Fourier transform of @var{A}\n\ using a Fast Fourier Transform (FFT) algorithm.\n\ \n\ The inverse FFT is calculated along the first non-singleton dimension\n\ of the array. Thus if @var{x} is a matrix, @code{fft (@var{x})} computes\n\ the inverse FFT for each column of @var{x}.\n\ \n\ If called with two arguments, @var{n} is expected to be an integer\n\ specifying the number of elements of @var{x} to use, or an empty\n\ matrix to specify that its value should be ignored. If @var{n} is\n\ larger than the dimension along which the inverse FFT is calculated, then\n\ @var{x} is resized and padded with zeros. Otherwise, if @var{n} is\n\ smaller than the dimension along which the inverse FFT is calculated,\n\ then @var{x} is truncated.\n\ \n\ If called with three arguments, @var{dim} is an integer specifying the\n\ dimension of the matrix along which the inverse FFT is performed\n\ @seealso{fft, ifft2, ifftn, fftw}\n\ @end deftypefn") { return do_fft (args, "ifft", 1); } /* %% Author: David Billinghurst (David.Billinghurst@riotinto.com.au) %% Comalco Research and Technology %% 02 May 2000 %!test %! N = 64; %! n = 4; %! t = 2*pi*(0:1:N-1)/N; %! s = cos (n*t); %! S = fft (s); %! %! answer = zeros (size (t)); %! answer(n+1) = N/2; %! answer(N-n+1) = N/2; %! %! assert (S, answer, 4*N*eps); %% Author: David Billinghurst (David.Billinghurst@riotinto.com.au) %% Comalco Research and Technology %% 02 May 2000 %!test %! N = 64; %! n = 7; %! t = 2*pi*(0:1:N-1)/N; %! s = cos (n*t); %! %! S = zeros (size (t)); %! S(n+1) = N/2; %! S(N-n+1) = N/2; %! %! assert (ifft (S), s, 4*N*eps); %% Author: David Billinghurst (David.Billinghurst@riotinto.com.au) %% Comalco Research and Technology %% 02 May 2000 %!test %! N = 64; %! n = 4; %! t = single (2*pi*(0:1:N-1)/N); %! s = cos (n*t); %! S = fft (s); %! %! answer = zeros (size (t), "single"); %! answer(n+1) = N/2; %! answer(N-n+1) = N/2; %! %! assert (S, answer, 4*N*eps ("single")); %% Author: David Billinghurst (David.Billinghurst@riotinto.com.au) %% Comalco Research and Technology %% 02 May 2000 %!test %! N = 64; %! n = 7; %! t = 2*pi*(0:1:N-1)/N; %! s = cos (n*t); %! %! S = zeros (size (t), "single"); %! S(n+1) = N/2; %! S(N-n+1) = N/2; %! %! assert (ifft (S), s, 4*N*eps ("single")); */