Mercurial > hg > octave-nkf
view scripts/specfun/nthroot.m @ 10763:b397b8edd8c5
fix off-by-1 dim in scalar map horzcat/vertcat
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Fri, 02 Jul 2010 08:10:57 +0200 |
parents | fbd7843974fa |
children | 693e22af08ae |
line wrap: on
line source
## Copyright (C) 2004, 2006, 2007, 2009 Paul Kienzle ## Copyright (C) 2010 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## ## Original version by Paul Kienzle distributed as free software in the ## public domain. ## -*- texinfo -*- ## @deftypefn {Function File} {} nthroot (@var{x}, @var{n}) ## ## Compute the n-th root of @var{x}, returning real results for real ## components of @var{x}. For example ## ## @example ## @group ## nthroot (-1, 3) ## @result{} -1 ## (-1) ^ (1 / 3) ## @result{} 0.50000 - 0.86603i ## @end group ## @end example ## ## @var{n} must be a scalar. If @var{n} is not an even integer and @var{X} has ## negative entries, an error is produced. ## ## @end deftypefn function y = nthroot (x, n) if (nargin != 2) print_usage (); endif if (! isscalar (n)) error ("nthroot: n must be a nonzero scalar"); endif if (n == 3) y = cbrt (x); elseif (n == -3) y = 1 ./ cbrt (x); elseif (n < 0) y = 1 ./ nthroot (x, -n); else ## Compute using power. if (n == round (n) && mod (n, 2) == 1) y = abs (x) .^ (1/n) .* sign (x); elseif (any (x(:) < 0)) error ("nthroot: if x contains negative values, n must be an odd integer"); else y = x .^ (1/n); endif if (finite (n) && n > 0 && n == round (n)) ## Correction. y = ((n-1)*y + x ./ (y.^(n-1))) / n; y = merge (finite (y), y, x); endif endif endfunction %!assert(nthroot(-32,5), -2); %!assert(nthroot(81,4), 3); %!assert(nthroot(Inf,4), Inf); %!assert(nthroot(-Inf,7), -Inf); %!assert(nthroot(-Inf,-7), 0);