Mercurial > hg > octave-nkf
view scripts/statistics/base/prctile.m @ 10830:b4ebfd675321
avoid static initialization disaster in dim_vector
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Thu, 29 Jul 2010 08:47:26 +0200 |
parents | be55736a0783 |
children | e151e23f73bc |
line wrap: on
line source
## Copyright (C) 2008, 2009 Ben Abbott ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{y} =} prctile (@var{x}, @var{p}) ## @deftypefnx {Function File} {@var{q} =} prctile (@var{x}, @var{p}, @var{dim}) ## For a sample @var{x}, compute the quantiles, @var{y}, corresponding ## to the cumulative probability values, P, in percent. All non-numeric ## values (NaNs) of X are ignored. ## ## If @var{x} is a matrix, compute the percentiles for each column and ## return them in a matrix, such that the i-th row of @var{y} contains the ## @var{p}(i)th percentiles of each column of @var{x}. ## ## The optional argument @var{dim} determines the dimension along which ## the percentiles are calculated. If @var{dim} is omitted, and @var{x} is ## a vector or matrix, it defaults to 1 (column wise quantiles). In the ## instance that @var{x} is a N-d array, @var{dim} defaults to the first ## dimension whose size greater than unity. ## ## @end deftypefn ## Author: Ben Abbott <bpabbott@mac.com> ## Description: Matlab style prctile function. function q = prctile (x, p, dim) if (nargin < 1 || nargin > 3) print_usage (); endif if (nargin < 2) p = 100*[0.00 0.25, 0.50, 0.75, 1.00]; endif if (nargin < 3) if (ndims (x) == 2) ## If a matrix or vector, use the 1st dimension. dim = 1; else ## If an N-d array, use the firt dimension with a length > 1. dim = find (size(v) != 1); if (isempty (dim)) dim = 1; endif endif endif ## Convert from percent. p = 0.01 * p; ## The 5th method is compatible with Matlab. method = 5; ## Call the quantile function q = quantile (x, p, dim, method); endfunction %!test %! pct = 50; %! q = prctile (1:4, pct, 1); %! qa = [1, 2, 3, 4]; %! assert (q, qa); %! q = prctile (1:4, pct, 2); %! qa = 2.5000; %! assert (q, qa); %!test %! pct = 50; %! x = [0.1126, 0.1148, 0.0521, 0.2364, 0.1393 %! 0.1718, 0.7273, 0.2041, 0.4531, 0.1585 %! 0.2795, 0.7978, 0.3296, 0.5567, 0.7307 %! 0.4288, 0.8753, 0.6477, 0.6287, 0.8165 %! 0.9331, 0.9312, 0.9635, 0.7796, 0.8461]; %! tol = 0.0001; %! q = prctile (x, pct, 1); %! qa = [0.2795, 0.7978, 0.3296, 0.5567, 0.7307]; %! assert (q, qa, tol); %! q = prctile (x, pct, 2); %! qa = [0.1148; 0.2041; 0.5567; 0.6477; 0.9312]; %! assert (q, qa, tol); %!test %! pct = 50; %! tol = 0.0001; %! x = [0.1126, 0.1148, 0.0521, 0.2364, 0.1393 %! 0.1718, 0.7273, 0.2041, 0.4531, 0.1585 %! 0.2795, 0.7978, 0.3296, 0.5567, 0.7307 %! 0.4288, 0.8753, 0.6477, 0.6287, 0.8165 %! 0.9331, 0.9312, 0.9635, 0.7796, 0.8461]; %! x(5,5) = Inf; %! q = prctile (x, pct, 1); %! qa = [0.2795, 0.7978, 0.3296, 0.5567, 0.7307]; %! assert (q, qa, tol); %! x(5,5) = -Inf; %! q = prctile (x, pct, 1); %! qa = [0.2795, 0.7978, 0.3296, 0.5567, 0.1585]; %! assert (q, qa, tol); %! x(1,1) = Inf; %! q = prctile (x, pct, 1); %! qa = [0.4288, 0.7978, 0.3296, 0.5567, 0.1585]; %! assert (q, qa, tol); %!test %! pct = 50; %! tol = 0.0001; %! x = [0.1126, 0.1148, 0.0521, 0.2364, 0.1393 %! 0.1718, 0.7273, 0.2041, 0.4531, 0.1585 %! 0.2795, 0.7978, 0.3296, 0.5567, 0.7307 %! 0.4288, 0.8753, 0.6477, 0.6287, 0.8165 %! 0.9331, 0.9312, 0.9635, 0.7796, 0.8461]; %! x(3,3) = Inf; %! q = prctile (x, pct, 1); %! qa = [0.2795, 0.7978, 0.6477, 0.5567, 0.7307]; %! assert (q, qa, tol); %! q = prctile (x, pct, 2); %! qa = [0.1148; 0.2041; 0.7307; 0.6477; 0.9312]; %! assert (q, qa, tol); %!test %! pct = 50; %! tol = 0.0001; %! x = [0.1126, 0.1148, 0.0521, 0.2364, 0.1393 %! 0.1718, 0.7273, 0.2041, 0.4531, 0.1585 %! 0.2795, 0.7978, 0.3296, 0.5567, 0.7307 %! 0.4288, 0.8753, 0.6477, 0.6287, 0.8165 %! 0.9331, 0.9312, 0.9635, 0.7796, 0.8461]; %! x(5,5) = NaN; %! q = prctile (x, pct, 2); %! qa = [0.1148; 0.2041; 0.5567; 0.6477; 0.9322]; %! assert (q, qa, tol); %! x(1,1) = NaN; %! q = prctile (x, pct, 2); %! qa = [0.1270; 0.2041; 0.5567; 0.6477; 0.9322]; %! assert (q, qa, tol); %! x(3,3) = NaN; %! q = prctile (x, pct, 2); %! qa = [0.1270; 0.2041; 0.6437; 0.6477; 0.9322]; %! assert (q, qa, tol);