Mercurial > hg > octave-nkf
view scripts/control/tf2ss.m @ 3297:b68ef5dec3bd
[project @ 1999-10-19 17:52:27 by jwe]
author | jwe |
---|---|
date | Tue, 19 Oct 1999 17:52:30 +0000 |
parents | f7e4a95916f2 |
children | 8dd4718801fd |
line wrap: on
line source
# Copyright (C) 1996,1998 Auburn University. All Rights Reserved # # This file is part of Octave. # # Octave is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2, or (at your option) any # later version. # # Octave is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License # along with Octave; see the file COPYING. If not, write to the Free # Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. function [a,b,c,d] = tf2ss(num,den) # Conversion from tranfer function to state-space. # The state space system # . # x = Ax + Bu # y = Cx + Du # # is obtained from a transfer function # # num(s) # G(s)=------- # den(s) # # via the function call [a,b,c,d] = tf2ss(num,den). # The vector 'den' must contain only one row, whereas the vector 'num' # may contain as many rows as there are outputs of the system 'y'. # The state space system matrices obtained from this function will be # in controllable canonical form as described in "Modern Control Theory", # [Brogan, 1991]. # Written by R. Bruce Tenison (June 22, 1994) btenison@eng.auburn.edu # mod A S Hodel July, Aug 1995 if(nargin != 2) error("tf2ss: wrong number of input arguments") elseif(isempty(num)) error("tf2ss: empty numerator"); elseif(isempty(den)) error("tf2ss: empy denominator"); elseif(!is_vector(num)) error(sprintf("num(%dx%d) must be a vector",rows(num),columns(num))); elseif(!is_vector(den)) error(sprintf("den(%dx%d) must be a vector",rows(den),columns(den))); endif # strip leading zeros from num, den nz = find(num != 0); if(isempty(nz)) num = 0; else num = num(nz(1):length(num)); endif nz = find(den != 0); if(isempty(nz)) error("denominator is 0."); else den = den(nz(1):length(den)); endif # force num, den to be row vectors num = vec(num)'; den = vec(den)'; nn = length(num); nd = length(den); if(nn > nd) error(sprintf("deg(num)=%d > deg(den)= %d",nn,nd)); endif # Check sizes if (nd == 1) a = []; b = []; c = []; d = num(:,1) / den(1); else # Pad num so that length(num) = length(den) if (nd-nn > 0) num = [zeros(1,nd-nn), num]; endif # Normalize the numerator and denominator vector w.r.t. the leading # coefficient d1 = den(1); num = num / d1; den = den(2:nd)/d1; sw = nd-1:-1:1; # Form the A matrix if(nd > 2) a = [zeros(nd-2,1),eye(nd-2,nd-2);-den(sw)]; else a = -den(sw); endif # Form the B matrix b = zeros(nd-1,1); b(nd-1,1) = 1; # Form the C matrix c = num(:,2:nd)-num(:,1)*den; c = c(:,sw); # Form the D matrix d = num(:,1); endif endfunction