Mercurial > hg > octave-nkf
view scripts/control/system/is_controllable.m @ 6773:b6e2ab6a8421
[project @ 2007-07-10 12:41:35 by dbateman]
author | dbateman |
---|---|
date | Tue, 10 Jul 2007 12:41:35 +0000 |
parents | 34f96dd5441b |
children | 93c65f2a5668 |
line wrap: on
line source
## Copyright (C) 1993, 1994, 1995 Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{retval}, @var{u}] =} is_controllable (@var{sys}, @var{tol}) ## @deftypefnx {Function File} {[@var{retval}, @var{u}] =} is_controllable (@var{a}, @var{b}, @var{tol}) ## Logical check for system controllability. ## ## @strong{Inputs} ## @table @var ## @item sys ## system data structure ## @item a ## @itemx b ## @var{n} by @var{n}, @var{n} by @var{m} matrices, respectively ## @item tol ## optional roundoff parameter. Default value: @code{10*eps} ## @end table ## ## @strong{Outputs} ## @table @var ## @item retval ## Logical flag; returns true (1) if the system @var{sys} or the ## pair (@var{a}, @var{b}) is controllable, whichever was passed as input ## arguments. ## @item u ## @var{u} is an orthogonal basis of the controllable subspace. ## @end table ## ## @strong{Method} ## Controllability is determined by applying Arnoldi iteration with ## complete re-orthogonalization to obtain an orthogonal basis of the ## Krylov subspace ## @example ## span ([b,a*b,...,a^@{n-1@}*b]). ## @end example ## The Arnoldi iteration is executed with @code{krylov} if the system ## has a single input; otherwise a block Arnoldi iteration is performed ## with @code{krylovb}. ## @seealso{size, rows, columns, length, ismatrix, isscalar, isvector ## is_observable, is_stabilizable, is_detectable, krylov, krylovb} ## @end deftypefn ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Created: August 1993 ## Updated by A. S. Hodel (scotte@eng.auburn.edu) Aubust, 1995 to use krylovb ## Updated by John Ingram (ingraje@eng.auburn.edu) July, 1996 for packed systems function [retval, U] = is_controllable (a, b, tol) deftol = 1; # assume default tolerance if(nargin < 1 | nargin > 3) print_usage (); elseif(isstruct(a)) ## system structure passed. sys = sysupdate(a,"ss"); [a,bs] = sys2ss(sys); if(nargin > 2) print_usage (); elseif(nargin == 2) tol = b; % get tolerance deftol = 0; endif b = bs; else ## a,b arguments sent directly. if(nargin < 2) print_usage (); else deftol = 1; endif endif ## check for default tolerance if(deftol) tol = 1000*eps; endif ## check tol dimensions if( !isscalar(tol) ) error("is_controllable: tol(%dx%d) must be a scalar", ... rows(tol),columns(tol)); elseif( !is_sample(tol) ) error("is_controllable: tol=%e must be positive",tol); endif ## check dimensions compatibility n = issquare (a); [nr, nc] = size (b); if (n == 0 | n != nr | nc == 0) warning("is_controllable: a=(%dx%d), b(%dx%d)",rows(a),columns(a),nr,nc); retval = 0; else ## call block-krylov subspace routine to get an orthogonal basis ## of the controllable subspace. [U,H,Ucols] = krylov(a,b,n,tol,1); retval = (Ucols == n); endif endfunction