Mercurial > hg > octave-nkf
view scripts/control/system/ss.m @ 6773:b6e2ab6a8421
[project @ 2007-07-10 12:41:35 by dbateman]
author | dbateman |
---|---|
date | Tue, 10 Jul 2007 12:41:35 +0000 |
parents | 34f96dd5441b |
children | 8b0cfeb06365 |
line wrap: on
line source
## Copyright (C) 1996, 1998 Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{outsys} =} ss (@var{a}, @var{b}, @var{c}, @var{d}, @var{tsam}, @var{n}, @var{nz}, @var{stname}, @var{inname}, @var{outname}, @var{outlist}) ## Create system structure from state-space data. May be continous, ## discrete, or mixed (sampled data) ## ## @strong{Inputs} ## @table @var ## @item a ## @itemx b ## @itemx c ## @itemx d ## usual state space matrices. ## ## default: @var{d} = zero matrix ## ## @item tsam ## sampling rate. Default: @math{tsam = 0} (continuous system) ## ## @item n ## @itemx nz ## number of continuous, discrete states in the system ## ## If @var{tsam} is 0, @math{n = @code{rows}(@var{a})}, @math{nz = 0}. ## ## If @var{tsam} is greater than zero, @math{n = 0}, ## @math{nz = @code{rows}(@var{a})} ## ## see below for system partitioning ## ## @item stname ## cell array of strings of state signal names ## ## default (@var{stname}=[] on input): @code{x_n} for continuous states, ## @code{xd_n} for discrete states ## ## @item inname ## cell array of strings of input signal names ## ## default (@var{inname} = [] on input): @code{u_n} ## ## @item outname ## cell array of strings of output signal names ## ## default (@var{outname} = [] on input): @code{y_n} ## ## @item outlist ## ## list of indices of outputs y that are sampled ## ## If @var{tsam} is 0, @math{outlist = []}. ## ## If @var{tsam} is greater than 0, @math{outlist = 1:@code{rows}(@var{c})}. ## @end table ## ## Unlike states, discrete/continous outputs may appear in any order. ## ## @code{sys2ss} returns a vector @var{yd} where ## @var{yd}(@var{outlist}) = 1; all other entries of @var{yd} are 0. ## ## @strong{Output} ## @table @var ## @item outsys ## system data structure ## @end table ## ## @strong{System partitioning} ## ## Suppose for simplicity that outlist specified ## that the first several outputs were continuous and the remaining outputs ## were discrete. Then the system is partitioned as ## @example ## @group ## x = [ xc ] (n x 1) ## [ xd ] (nz x 1 discrete states) ## a = [ acc acd ] b = [ bc ] ## [ adc add ] [ bd ] ## c = [ ccc ccd ] d = [ dc ] ## [ cdc cdd ] [ dd ] ## ## (cdc = c(outlist,1:n), etc.) ## @end group ## @end example ## with dynamic equations: ## @ifinfo ## @math{d/dt xc(t) = acc*xc(t) + acd*xd(k*tsam) + bc*u(t)} ## ## @math{xd((k+1)*tsam) = adc*xc(k*tsam) + add*xd(k*tsam) + bd*u(k*tsam)} ## ## @math{yc(t) = ccc*xc(t) + ccd*xd(k*tsam) + dc*u(t)} ## ## @math{yd(k*tsam) = cdc*xc(k*tsam) + cdd*xd(k*tsam) + dd*u(k*tsam)} ## @end ifinfo ## @iftex ## @tex ## $$\eqalign{ ## {d \over dt} x_c(t) ## & = a_{cc} x_c(t) + a_{cd} x_d(k*t_{sam}) + bc*u(t) \cr ## x_d((k+1)*t_{sam}) ## & = a_{dc} x_c(k t_{sam}) + a_{dd} x_d(k t_{sam}) + b_d u(k t_{sam}) \cr ## y_c(t) ## & = c_{cc} x_c(t) + c_{cd} x_d(k t_{sam}) + d_c u(t) \cr ## y_d(k t_{sam}) ## & = c_{dc} x_c(k t_{sam}) + c_{dd} x_d(k t_{sam}) + d_d u(k t_{sam}) ## }$$ ## @end tex ## @end iftex ## ## @strong{Signal partitions} ## @example ## @group ## | continuous | discrete | ## ---------------------------------------------------- ## states | stname(1:n,:) | stname((n+1):(n+nz),:) | ## ---------------------------------------------------- ## outputs | outname(cout,:) | outname(outlist,:) | ## ---------------------------------------------------- ## @end group ## @end example ## where @math{cout} is the list of in 1:@code{rows}(@var{p}) ## that are not contained in outlist. (Discrete/continuous outputs ## may be entered in any order desired by the user.) ## ## @strong{Example} ## @example ## octave:1> a = [1 2 3; 4 5 6; 7 8 10]; ## octave:2> b = [0 0 ; 0 1 ; 1 0]; ## octave:3> c = eye (3); ## octave:4> sys = ss (a, b, c, [], 0, 3, 0, @{"volts", "amps", "joules"@}); ## octave:5> sysout(sys); ## Input(s) ## 1: u_1 ## 2: u_2 ## ## Output(s): ## 1: y_1 ## 2: y_2 ## 3: y_3 ## ## state-space form: ## 3 continuous states, 0 discrete states ## State(s): ## 1: volts ## 2: amps ## 3: joules ## ## A matrix: 3 x 3 ## 1 2 3 ## 4 5 6 ## 7 8 10 ## B matrix: 3 x 2 ## 0 0 ## 0 1 ## 1 0 ## C matrix: 3 x 3 ## 1 0 0 ## 0 1 0 ## 0 0 1 ## D matrix: 3 x 3 ## 0 0 ## 0 0 ## 0 0 ## @end example ## Notice that the @math{D} matrix is constructed by default to the ## correct dimensions. Default input and output signals names were assigned ## since none were given. ## @end deftypefn ## Author: John Ingram <ingraje@eng.auburn.edu> ## Created: July 20, 1996 function retsys = ss (a, b, c, d, tsam, n, nz, stname, inname, outname, outlist) ## Test for correct number of inputs if ((nargin < 3) | (nargin > 11)) print_usage (); endif ## verify A, B, C, D arguments ## If D is not specified, set it to a zero matrix of appriate dimension. if (nargin == 3) d = zeros(rows(c) , columns(b)); elseif (isempty(d)) d = zeros(rows(c) , columns(b)); endif ## Check the dimensions [na,m,p] = abcddim(a,b,c,d); ## If dimensions are wrong, exit function if (m == -1) error("a(%dx%d), b(%dx%d), c(%dx%d), d(%dx%d); incompatible", ... rows(a), columns(a), rows(b), columns(b), rows(c), columns(c), ... rows(d), columns(d)); endif ## check for tsam input if(nargin < 5) tsam = 0; elseif( !( is_sample(tsam) | (tsam == 0) ) ) error("tsam must be a nonnegative real scalar"); endif ## check for continuous states if( (nargin < 6) & (tsam == 0) ) n = na; elseif(nargin < 6) n = 0; elseif((!ismatrix(n)) | ischar(n)) error("Parameter n is not a numerical value."); elseif( (!isscalar(n)) | (n < 0 ) | (n != round(n)) ) if(isscalar(n)) error("invalid value of n=%d,%e",n,n); else error("invalid value of n=(%dx%d)", ... rows(n), columns(n)); endif endif ## check for num discrete states if( (nargin < 7) & (tsam == 0)) nz = 0; elseif(nargin < 7) nz = na - n; elseif((!ismatrix(nz)) | ischar(nz)) error("Parameter nz is not a numerical value."); elseif( (!isscalar(nz)) | (nz < 0 ) | (nz != round(nz)) ) if(isscalar(nz)) error(["invalid value of nz=",num2str(nz)]); else error(["invalid value of nz=(",num2str(rows(nz)),"x", ... num2str(columns(nz)),")"]); endif endif ## check for total number of states if( (n + nz) != na ) error(["invalid: a is ",num2str(na),"x",num2str(na),", n=", ... num2str(n),", nz=",num2str(nz)]); endif ## construct system with default names retsys.a = a; retsys.b = b; retsys.c = c; retsys.d = d; retsys.n = n; retsys.nz = nz; retsys.tsam = tsam; retsys.yd = zeros(1,p); # default value entered below ## Set the system vector: active = 2(ss), updated = [0 0 1]; retsys.sys = [2, 0, 0, 1]; retsys.stname = __sysdefstname__ (n, nz); retsys.inname = __sysdefioname__ (m, "u"); retsys.outname = __sysdefioname__ (p, "y"); ## check for state names if(nargin >= 8) if(!isempty(stname)) retsys = syssetsignals(retsys,"st",stname); endif endif ## check for input names if(nargin >= 9) if(!isempty(inname)) retsys = syssetsignals(retsys,"in",inname); endif endif ## check for output names if(nargin >= 10) if(!isempty(outname)) retsys = syssetsignals(retsys,"out",outname); endif endif ## set up yd if(nargin < 11) retsys = syssetsignals(retsys,"yd",ones(1,p)*(tsam > 0)); else if(!isempty(outlist)) retsys = syssetsignals(retsys,"yd",ones(size(outlist)),outlist); endif endif endfunction