Mercurial > hg > octave-nkf
view libinterp/corefcn/eig.cc @ 20744:b70cc4bd8109
begin removal of global error_state variable
* gripes.h, gripes.cc (gripe_library_execution_error): Delete.
* error.cc (warning_state): Delete unused variable.
(reset_error_handler): Don't set warning_state or error_state.
(debug_or_throw_exception): New static function.
(verror): Don't check error_state.
(vmessage): Call debug_or_throw_exception instead of setting
error_state.
(error_1, error_2): Combine into single function, error_1 that prints
error message and ultimately calls debug_or_throw_exception.
(verror, verror_with_cfn, verror_with_id_cfn): Call error_1. Don't
check or set warning_state.
(error): Don't check error_state.
(Flasterror, Flasterr): Adapt to not using error_state.
(interpreter_try): Don't unwind_protect error_state.
* NEWS: Update.
* doc/interpreter/external.txi: Explain octave_execution_exception
instead of error_state for matrix addition example.
* jit-typeinfo.cc (octave_jit_gripe_nan_to_logical_conversion,
octave_jit_ginvalid_index, octave_jit_gindex_range,
octave_jit_paren_scalar, octave_jit_paren_scalar_subsasgn):
Don't catch octave_execution_exception.
* cellfun.cc (Fcellfun): Use exceptions instead of error_state.
* ls-mat-ascii.cc (save_mat_ascii_data): Likewise.
* mex.cc (mexCallMATLAB, mexEvalString): Likewise.
* variables.cc (safe_symbol_lookup): Likewise.
* svd.cc (Fsvd): Eliminate use of error_state.
* __magick_read__.cc (read_file, write_file): Likewise.
* variables.cc (generate_struct_completions): Eliminate use of
obsolete warning_state variable.
* ov-builtin.cc (octave_builtin::do_multi_index_op): Don't catch
octave_execution_exception and call gripe_library_execution_error.
* ov-class.cc (octave_class::reconstruct_exemplar): Eliminate use of
error_state. Catch possible octave_execution_exception in
do_multi_index_op.
* ov-mex-fcn.cc (octave_mex_function::do_multi_index_op): Eliminate
use of error_state. Catch possible octave_execution_exception in
call_mex.
* ov-fcn-handle.cc (octave_fcn_binder::maybe_binder): Eliminate use of
error_state.
* ov-oncleanup.cc (octave_oncleanup::~octave_oncleanup): Eliminate use
of error_state. Propagate possible octave_execution_exception from
do_multi_index_op.
* ov.cc (octave_value::assign, do_binary_op, do_unary_op,
octave_value::do_non_const_unary_op): Don't catch
octave_execution_exception here.
* oct-parse.in.yy (octave_base_parser::finish_colon_expression,
octave_base_parser::finish_array_list): Eliminate use of warning_state
and error_state.
(Feval, Fevalin): Use exceptions instead of error_state.
* pt-eval.cc, pt-eval.h (tree_evaluator::unwind_protect_exception):
New static variable.
* (tree_evaluator::visit_statement): Don't catch
octave_execution_exception here.
(tree_evaluator::visit_try_catch_command,
tree_evaluator::do_unwind_protect_cleanup): Eliminate use of error_state.
(tree_evaluator::visit_unwind_protect_command): Use
unwind_protect_exception to track whether an exception has occurred in
the try block.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 01 Oct 2015 16:18:19 -0400 |
parents | ff904ae0285b |
children | f90c8372b7ba |
line wrap: on
line source
/* Copyright (C) 1996-2015 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "EIG.h" #include "fEIG.h" #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN (eig, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {@var{lambda} =} eig (@var{A})\n\ @deftypefnx {Built-in Function} {@var{lambda} =} eig (@var{A}, @var{B})\n\ @deftypefnx {Built-in Function} {[@var{V}, @var{lambda}] =} eig (@var{A})\n\ @deftypefnx {Built-in Function} {[@var{V}, @var{lambda}] =} eig (@var{A}, @var{B})\n\ Compute the eigenvalues (and optionally the eigenvectors) of a matrix\n\ or a pair of matrices\n\ \n\ The algorithm used depends on whether there are one or two input\n\ matrices, if they are real or complex, and if they are symmetric\n\ (Hermitian if complex) or non-symmetric.\n\ \n\ The eigenvalues returned by @code{eig} are not ordered.\n\ @seealso{eigs, svd}\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin > 2 || nargin == 0 || nargout > 2) { print_usage (); return retval; } octave_value arg_a, arg_b; octave_idx_type nr_a, nr_b, nc_a, nc_b; nr_a = nr_b = nc_a = nc_b = 0; arg_a = args(0); nr_a = arg_a.rows (); nc_a = arg_a.columns (); int arg_is_empty = empty_arg ("eig", nr_a, nc_a); if (arg_is_empty < 0) return retval; else if (arg_is_empty > 0) return octave_value_list (2, Matrix ()); if (!(arg_a.is_single_type () || arg_a.is_double_type ())) { gripe_wrong_type_arg ("eig", arg_a); return retval; } if (nargin == 2) { arg_b = args(1); nr_b = arg_b.rows (); nc_b = arg_b.columns (); arg_is_empty = empty_arg ("eig", nr_b, nc_b); if (arg_is_empty < 0) return retval; else if (arg_is_empty > 0) return octave_value_list (2, Matrix ()); if (!(arg_b.is_single_type () || arg_b.is_double_type ())) { gripe_wrong_type_arg ("eig", arg_b); return retval; } } if (nr_a != nc_a) { gripe_square_matrix_required ("eig"); return retval; } if (nargin == 2 && nr_b != nc_b) { gripe_square_matrix_required ("eig"); return retval; } Matrix tmp_a, tmp_b; ComplexMatrix ctmp_a, ctmp_b; FloatMatrix ftmp_a, ftmp_b; FloatComplexMatrix fctmp_a, fctmp_b; if (arg_a.is_single_type ()) { FloatEIG result; if (nargin == 1) { if (arg_a.is_real_type ()) { ftmp_a = arg_a.float_matrix_value (); if (error_state) return retval; else result = FloatEIG (ftmp_a, nargout > 1); } else { fctmp_a = arg_a.float_complex_matrix_value (); if (error_state) return retval; else result = FloatEIG (fctmp_a, nargout > 1); } } else if (nargin == 2) { if (arg_a.is_real_type () && arg_b.is_real_type ()) { ftmp_a = arg_a.float_matrix_value (); ftmp_b = arg_b.float_matrix_value (); if (error_state) return retval; else result = FloatEIG (ftmp_a, ftmp_b, nargout > 1); } else { fctmp_a = arg_a.float_complex_matrix_value (); fctmp_b = arg_b.float_complex_matrix_value (); if (error_state) return retval; else result = FloatEIG (fctmp_a, fctmp_b, nargout > 1); } } if (! error_state) { if (nargout == 0 || nargout == 1) { retval(0) = result.eigenvalues (); } else { // Blame it on Matlab. FloatComplexDiagMatrix d (result.eigenvalues ()); retval(1) = d; retval(0) = result.eigenvectors (); } } } else { EIG result; if (nargin == 1) { if (arg_a.is_real_type ()) { tmp_a = arg_a.matrix_value (); if (error_state) return retval; else result = EIG (tmp_a, nargout > 1); } else { ctmp_a = arg_a.complex_matrix_value (); if (error_state) return retval; else result = EIG (ctmp_a, nargout > 1); } } else if (nargin == 2) { if (arg_a.is_real_type () && arg_b.is_real_type ()) { tmp_a = arg_a.matrix_value (); tmp_b = arg_b.matrix_value (); if (error_state) return retval; else result = EIG (tmp_a, tmp_b, nargout > 1); } else { ctmp_a = arg_a.complex_matrix_value (); ctmp_b = arg_b.complex_matrix_value (); if (error_state) return retval; else result = EIG (ctmp_a, ctmp_b, nargout > 1); } } if (! error_state) { if (nargout == 0 || nargout == 1) { retval(0) = result.eigenvalues (); } else { // Blame it on Matlab. ComplexDiagMatrix d (result.eigenvalues ()); retval(1) = d; retval(0) = result.eigenvectors (); } } } return retval; } /* %!assert (eig ([1, 2; 2, 1]), [-1; 3], sqrt (eps)) %!test %! [v, d] = eig ([1, 2; 2, 1]); %! x = 1 / sqrt (2); %! assert (d, [-1, 0; 0, 3], sqrt (eps)); %! assert (v, [-x, x; x, x], sqrt (eps)); %!assert (eig (single ([1, 2; 2, 1])), single ([-1; 3]), sqrt (eps ("single"))) %!test %! [v, d] = eig (single ([1, 2; 2, 1])); %! x = single (1 / sqrt (2)); %! assert (d, single ([-1, 0; 0, 3]), sqrt (eps ("single"))); %! assert (v, [-x, x; x, x], sqrt (eps ("single"))); %!test %! A = [1, 2; -1, 1]; B = [3, 3; 1, 2]; %! [v, d] = eig (A, B); %! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps)); %! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps)); %!test %! A = single ([1, 2; -1, 1]); B = single ([3, 3; 1, 2]); %! [v, d] = eig (A, B); %! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps ("single"))); %! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps ("single"))); %!test %! A = [1, 2; 2, 1]; B = [3, -2; -2, 3]; %! [v, d] = eig (A, B); %! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps)); %! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps)); %!test %! A = single ([1, 2; 2, 1]); B = single ([3, -2; -2, 3]); %! [v, d] = eig (A, B); %! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps ("single"))); %! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps ("single"))); %!test %! A = [1+3i, 2+i; 2-i, 1+3i]; B = [5+9i, 2+i; 2-i, 5+9i]; %! [v, d] = eig (A, B); %! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps)); %! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps)); %!test %! A = single ([1+3i, 2+i; 2-i, 1+3i]); B = single ([5+9i, 2+i; 2-i, 5+9i]); %! [v, d] = eig (A, B); %! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps ("single"))); %! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps ("single"))); %!test %! A = [1+3i, 2+3i; 3-8i, 8+3i]; B = [8+i, 3+i; 4-9i, 3+i]; %! [v, d] = eig (A, B); %! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps)); %! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps)); %!test %! A = single ([1+3i, 2+3i; 3-8i, 8+3i]); B = single ([8+i, 3+i; 4-9i, 3+i]); %! [v, d] = eig (A, B); %! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps ("single"))); %! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps ("single"))); %!test %! A = [1, 2; 3, 8]; B = [8, 3; 4, 3]; %! [v, d] = eig (A, B); %! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps)); %! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps)); %!test %! A = [1, 1+i; 1-i, 1]; B = [2, 0; 0, 2]; %! [v, d] = eig (A, B); %! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps)); %! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps)); %!test %! A = single ([1, 1+i; 1-i, 1]); B = single ([2, 0; 0, 2]); %! [v, d] = eig (A, B); %! assert (A * v(:, 1), d(1, 1) * B * v(:, 1), sqrt (eps ("single"))); %! assert (A * v(:, 2), d(2, 2) * B * v(:, 2), sqrt (eps ("single"))); %!error eig () %!error eig ([1, 2; 3, 4], [4, 3; 2, 1], 1) %!error <EIG requires same size matrices> eig ([1, 2; 3, 4], 2) %!error <argument must be a square matrix> eig ([1, 2; 3, 4; 5, 6]) %!error <wrong type argument> eig ("abcd") %!error <wrong type argument> eig ([1 2 ; 2 3], "abcd") %!error <wrong type argument> eig (false, [1 2 ; 2 3]) */