Mercurial > hg > octave-nkf
view scripts/control/system/sysmin.m @ 4771:b8105302cfe8
[project @ 2004-02-16 17:45:50 by jwe]
author | jwe |
---|---|
date | Mon, 16 Feb 2004 17:45:50 +0000 |
parents | 3234a698073a |
children | bdbee5282954 |
line wrap: on
line source
## Copyright (C) 1996 Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{retsys}, @var{nc}, @var{no}] =} sysmin (@var{sys}, @var{flg}) ## return a minimal (or reduced order) system ## inputs: ## sys: system data structure ## flg: 0 [default] return minimal system; state names lost ## : 1 return system with physical states removed that ## are either uncontrollable or unobservable ## (cannot reduce further without discarding physical ## meaning of states) ## outputs: ## retsys: returned system ## nc: number of controllable states in the returned system ## no: number of observable states in the returned system ## cflg: is_controllable(retsys) ## oflg: is_observable(retsys) ## @end deftypefn ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> function [retsys, nc, no, cflg, oflg] = sysmin (sys, flg) switch(nargin) case(1), flg = 0; case(2), jnk = flg; # dummy operation otherwise, usage("[retsys,nc,no] = sysmin(sys{,flg})"); endswitch dflg = is_digital(sys,2); [n,nz,m,p] = sysdimensions(sys); if(n*nz > 0) # both continuous and discrete states [aa,bb,cc,dd,tsam,n,nz,stnam,innam,outnam,yd] = sys2ss(sys); crng = 1:n; drng = n+(1:nz); # get minimal realization of continuous part Ac = aa(crng,crng); Acd = aa(crng,drng); Adc = aa(drng,crng); Ad = aa(drng,drng); Bc = bb(crng,:); Bd = bb(drng,:); Cc = cc(:,crng); Cd = cc(:,drng); cstnam = stnam(crng); dstnam = stnam(drng); cinnam = __sysconcat__(innam,stnam(drng)); coutnam = __sysconcat__(outnam,stnam(drng)); csys = ss(Ac,[Bc,Acd],[Cc;Adc]); csys = syssetsignals(csys,"st",cstnam); csys = syssetsignals(csys,"in",cinnam); csys = syssetsignals(csys,"out",coutnam); # reduce continuous system, recombine with discrete part csys = sysmin(csys,flg); cn = sysdimensions(csys); if(cn == 0) # continuous states are removed; just reduce the discrete part sys = sysprune(sys,1:p,1:m,drng); retsys = sysmin(sys,flg); else # extract updated parameters from reduced continuous system [caa,cbb,ccc,cdd,ctsam,cn,cnz,cstnam,cinnam,coutnam] = sys2ss(csys); crng = 1:cn; Ac = caa; Bc = cbb(:,1:m); Acd = cbb(:,m+(1:nz)); Cc = ccc(1:p,:); Adc = ccc(p + (1:nz),:); # recombine to reduce discrete part of the system dinnam = __sysconcat__(innam,cstnam); doutnam = __sysconcat__(outnam,cstnam); dsys = ss(Ad,[Bd,Adc],[Cd;Acd],[],tsam); dsys = syssetsignals(dsys,"st",dstnam); dsys = syssetsignals(dsys,"in",dinnam); dsys = syssetsignals(dsys,"out",doutnam); # reduce discrete subsystem dsys = sysmin(dsys); [n1,nz] = sysdimensions(dsys); if(nz == 0) # discrete subsystem is not needed retsys = sysprune(csys,1:p,1:m); else # combine discrete, continuous subsystems [Ad,dbb,dcc] = sys2ss(dsys); dstnam = sysgetsignals(dsys,"st"); Bd = dbb(:,1:m); Adc = dbb(:,m+(1:cn)); Cd = dcc(1:p,:); Acd = dcc(p+(1:cn),:); stnam = __sysconcat__(cstnam,dstnam); aa = [Ac, Acd; Adc, Ad]; bb = [Bc; Bd]; cc = [Cc, Cd]; retsys = ss([Ac, Acd; Adc, Ad], [Bc ; Bd], [Cc, Cd], dd, tsam, ... cn, nz, stnam, innam, outnam, find(yd == 1)); end endif else Ts = sysgettsam(sys); switch(flg) case(0), ## reduce to a minimal system [aa,bb,cc,dd] = sys2ss(sys); [cflg,Uc] = is_controllable(aa,bb); if(!cflg) ## reduce to controllable states if(!isempty(Uc)) aa = Uc'*aa*Uc; bb = Uc'*bb; cc = cc*Uc; else aa = bb = cc = []; endif endif if(!isempty(aa)) [oflg,Uo] = is_observable(aa,cc); if(!oflg) if(!isempty(Uo)) aa = Uo'*aa*Uo; bb = Uo'*bb; cc = cc*Uo; else aa = bb = cc = []; endif endif endif switch(dflg) case(0), nc = no = nn = columns(aa); nz = 0; case(1), nc = no = nz = columns(aa); nn = 0; endswitch innam = sysgetsignals(sys,"in"); outnam= sysgetsignals(sys,"out"); retsys = ss(aa,bb,cc,dd,Ts,nn,nz,[],innam,outnam); case(1), ## reduced model with physical states [cflg,Uc] = is_controllable(sys); xc = find(max(abs(Uc')) != 0); [oflg,Uo] = is_observable(sys); xo = find(max(abs(Uo')) != 0); xx = intersection(xc,xo); if(isempty(xx)) xx = 0; endif # signal no states in reduced model retsys = sysprune(sys,[],[],xx); otherwise, error ("invalid value of flg = %d", flg); endswitch if(sysdimensions(retsys,"st") > 0) [cflg,Uc] = is_controllable(retsys); nc = columns(Uc); [oflg,Uo] = is_observable(retsys); no = columns(Uo); else nc = no = 0; endif endif endfunction