Mercurial > hg > octave-nkf
view doc/interpreter/arith.txi @ 8833:b86b42f77899
__patch__.m: fix indexing of varargin
author | Steffen Groot <steffen.groot@technolution.eu> |
---|---|
date | Fri, 20 Feb 2009 15:23:47 -0500 |
parents | 8463d1a2e544 |
children | eb63fbe60fab |
line wrap: on
line source
@c Copyright (C) 1996, 1997, 1999, 2000, 2001, 2002, 2007 John W. Eaton @c @c This file is part of Octave. @c @c Octave is free software; you can redistribute it and/or modify it @c under the terms of the GNU General Public License as published by the @c Free Software Foundation; either version 3 of the License, or (at @c your option) any later version. @c @c Octave is distributed in the hope that it will be useful, but WITHOUT @c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or @c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License @c for more details. @c @c You should have received a copy of the GNU General Public License @c along with Octave; see the file COPYING. If not, see @c <http://www.gnu.org/licenses/>. @node Arithmetic @chapter Arithmetic Unless otherwise noted, all of the functions described in this chapter will work for real and complex scalar or matrix arguments. Functions described as @dfn{mapping functions} apply the given operation to each element when given a matrix argument. @menu * Utility Functions:: * Complex Arithmetic:: * Trigonometry:: * Sums and Products:: * Special Functions:: * Coordinate Transformations:: * Mathematical Constants:: @end menu @node Utility Functions @section Utility Functions The following functions are available for working with complex numbers. Each expects a single argument. They are called @dfn{mapping functions} because when given a matrix argument, they apply the given function to each element of the matrix. @DOCSTRING(ceil) @DOCSTRING(cplxpair) @DOCSTRING(del2) @DOCSTRING(exp) @DOCSTRING(expm1) @DOCSTRING(factor) @DOCSTRING(factorial) @DOCSTRING(fix) @DOCSTRING(floor) @DOCSTRING(fmod) @DOCSTRING(gcd) @DOCSTRING(gradient) @DOCSTRING(hypot) @DOCSTRING(lcm) @DOCSTRING(log) @DOCSTRING(log1p) @DOCSTRING(log10) @DOCSTRING(log2) @DOCSTRING(max) @DOCSTRING(min) @DOCSTRING(cummax) @DOCSTRING(cummin) @DOCSTRING(mod) @DOCSTRING(nextpow2) @DOCSTRING(nthroot) @DOCSTRING(pow2) @DOCSTRING(primes) @DOCSTRING(reallog) @DOCSTRING(realpow) @DOCSTRING(realsqrt) @DOCSTRING(rem) @DOCSTRING(round) @DOCSTRING(roundb) @DOCSTRING(sign) @DOCSTRING(sqrt) @node Complex Arithmetic @section Complex Arithmetic The following functions are available for working with complex numbers. Each expects a single argument. Given a matrix they work on an element by element basis. In the descriptions of the following functions, @iftex @tex $z$ is the complex number $x + iy$, where $i$ is defined as $\sqrt{-1}$. @end tex @end iftex @ifinfo @var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is defined as @code{sqrt (-1)}. @end ifinfo @DOCSTRING(abs) @DOCSTRING(arg) @DOCSTRING(conj) @DOCSTRING(imag) @DOCSTRING(real) @node Trigonometry @section Trigonometry Octave provides the following trigonometric functions. Angles are specified in radians. To convert from degrees to radians multiply by @iftex @tex $\pi/180$ @end tex @end iftex @ifinfo @code{pi/180} @end ifinfo (e.g. @code{sin (30 * pi/180)} returns the sine of 30 degrees). @DOCSTRING(sin) @DOCSTRING(cos) @DOCSTRING(tan) @DOCSTRING(sec) @DOCSTRING(csc) @DOCSTRING(cot) @DOCSTRING(asin) @DOCSTRING(acos) @DOCSTRING(atan) @DOCSTRING(asec) @DOCSTRING(acsc) @DOCSTRING(acot) @DOCSTRING(sinh) @DOCSTRING(cosh) @DOCSTRING(tanh) @DOCSTRING(sech) @DOCSTRING(csch) @DOCSTRING(coth) @DOCSTRING(asinh) @DOCSTRING(acosh) @DOCSTRING(atanh) @DOCSTRING(asech) @DOCSTRING(acsch) @DOCSTRING(acoth) Each of these functions expects a single argument. For matrix arguments, they work on an element by element basis. For example, @example @group sin ([1, 2; 3, 4]) @result{} 0.84147 0.90930 0.14112 -0.75680 @end group @end example @DOCSTRING(atan2) In addition to the trigonometric functions that work with radians, Octave also provides the following functions which work with degrees. @DOCSTRING(sind) @DOCSTRING(cosd) @DOCSTRING(tand) @DOCSTRING(secd) @DOCSTRING(cscd) @DOCSTRING(cotd) @DOCSTRING(asind) @DOCSTRING(acosd) @DOCSTRING(atand) @DOCSTRING(asecd) @DOCSTRING(acscd) @DOCSTRING(acotd) @node Sums and Products @section Sums and Products @DOCSTRING(sum) @DOCSTRING(prod) @DOCSTRING(cumsum) @DOCSTRING(cumprod) @DOCSTRING(sumsq) @DOCSTRING(accumarray) @node Special Functions @section Special Functions @DOCSTRING(besselj) @DOCSTRING(airy) @DOCSTRING(beta) @DOCSTRING(betainc) @DOCSTRING(betaln) @DOCSTRING(bincoeff) @DOCSTRING(erf) @DOCSTRING(erfc) @DOCSTRING(erfinv) @DOCSTRING(gamma) @DOCSTRING(gammainc) @DOCSTRING(legendre) @anchor{doc-gammaln} @DOCSTRING(lgamma) @DOCSTRING(cross) @DOCSTRING(commutation_matrix) @DOCSTRING(duplication_matrix) @node Coordinate Transformations @section Coordinate Transformations @DOCSTRING(cart2pol) @DOCSTRING(pol2cart) @DOCSTRING(cart2sph) @DOCSTRING(sph2cart) @node Mathematical Constants @section Mathematical Constants @DOCSTRING(I) @DOCSTRING(Inf) @DOCSTRING(NaN) @DOCSTRING(pi) @DOCSTRING(e) @DOCSTRING(eps) @DOCSTRING(realmax) @DOCSTRING(realmin)