Mercurial > hg > octave-nkf
view scripts/control/is_controllable.m @ 3213:ba1c7cdc6090
[project @ 1998-11-06 16:15:36 by jwe]
author | jwe |
---|---|
date | Fri, 06 Nov 1998 16:16:31 +0000 |
parents | 8b262e771614 |
children | dbcc24961c44 |
line wrap: on
line source
# Copyright (C) 1993, 1994, 1995 John W. Eaton # # This file is part of Octave. # # Octave is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2, or (at your option) any # later version. # # Octave is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License # along with Octave; see the file COPYING. If not, write to the Free # Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. function [retval,U] = is_controllable (a, b, tol) # [retval, U] = is_controllable (a, b {,tol}) # = is_controllable (sys{, tol}) # Returns retval=1 if the system sys or the pair (a, b) is controllable # 0 if not. # U is an orthogonal basis of the controllable subspace. # # Controllability is determined by applying Arnoldi iteration with # complete re-orthogonalization to obtain an orthogonal basis of the # Krylov subspace. # # span ([b,a*b,...,a^ b]). # # tol is a roundoff paramter, set to 10*eps if omitted. # # See also: size, rows, columns, length, is_matrix, is_scalar, is_vector # is_observable, is_stabilizable, is_detectable, krylov, krylovb # Written by A. S. Hodel (scotte@eng.auburn.edu) August, 1993. # Updated by A. S. Hodel (scotte@eng.auburn.edu) Aubust, 1995 to use krylovb # Updated by John Ingram (ingraje@eng.auburn.edu) July, 1996 for packed systems # SYS_INTERNAL accesses members of packed system structure # $Revision: 1.14 $ deftol = 1; # assume default tolerance if(nargin < 1 | nargin > 3) usage(sprintf("[retval,U] = %s\n\t%s", "is_controllable(a {, b ,tol})", ... "is_controllable(sys{,tol})")); elseif(is_struct(a)) # system structure passed. sys = sysupdate(a,"ss"); [a,bs] = sys2ss(sys); if(nargin > 2) usage("[retval,U] = is_controllable(sys{,tol})"); elseif(nargin == 2) tol = b; % get tolerance deftol = 0; endif b = bs; else # a,b arguments sent directly. if(nargin < 2) usage("[retval,U] = is_controllable(a {, b ,tol})"); else deftol = 1; endif endif # check for default tolerance if(deftol) tol = 1000*eps; endif # check tol dimensions if( !is_sample(tol) ) error("is_controllable: tol must be a positive scalar!"); endif # check dimensions compatibility n = is_square (a); [nr, nc] = size (b); if (n == 0 | n != nr | nc == 0) warning(["is_controllable: a=(",num2str(rows(a)),"x", ... num2str(columns(a)),"), b=(",num2str(nr),"x",num2str(nc),")"]) retval = 0; else # call block-krylov subspace routine to get an orthogonal basis # of the controllable subspace. if(nc == 1) [U,H,Ucols] = krylov(a,b,n,tol); U = U(:,1:Ucols); else [U,Ucols] = krylovb(a,b,n,tol); U = U(:,1:Ucols); endif retval = (Ucols == n); endif endfunction