Mercurial > hg > octave-nkf
view scripts/signal/bartlett.m @ 20793:ba2b07c13913
use new string_value method to handle value extraction errors
* __dispatch__.cc, balance.cc, colloc.cc, conv2.cc, data.cc, debug.cc,
graphics.cc, input.cc, matrix_type.cc, oct-hist.cc, schur.cc,
spparms.cc, symtab.cc, sysdep.cc, toplev.cc, utils.cc:
Use new string_value method.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 09 Oct 2015 10:06:39 -0400 |
parents | 83792dd9bcc1 |
children |
line wrap: on
line source
## Copyright (C) 1995-2015 Andreas Weingessel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} bartlett (@var{m}) ## Return the filter coefficients of a Bartlett (triangular) window of length ## @var{m}. ## ## For a definition of the Bartlett window see, e.g., ## @nospell{A.V. Oppenheim & R. W. Schafer}, ## @cite{Discrete-Time Signal Processing}. ## @end deftypefn ## Author: AW <Andreas.Weingessel@ci.tuwien.ac.at> ## Description: Coefficients of the Bartlett (triangular) window function c = bartlett (m) if (nargin != 1) print_usage (); endif if (! (isscalar (m) && (m == fix (m)) && (m > 0))) error ("bartlett: M must be a positive integer"); endif if (m == 1) c = 1; else m -= 1; n = fix (m / 2); c = [2*(0:n)/m, 2-2*(n+1:m)/m]'; endif endfunction %!assert (bartlett (1), 1) %!assert (bartlett (2), zeros (2,1)) %!assert (bartlett (15), flip (bartlett (15)), 5*eps) %!assert (bartlett (16), flip (bartlett (16)), 5*eps) %!test %! N = 9; %! A = bartlett (N); %! assert (A(ceil (N/2)), 1); %!error bartlett () %!error bartlett (0.5) %!error bartlett (-1) %!error bartlett (ones (1,4))