Mercurial > hg > octave-nkf
view src/ov-flt-cx-mat.cc @ 11273:bd2643f0ce57 ss-3-3-54
snapshot 3.3.54
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 19 Nov 2010 16:05:58 -0500 |
parents | 0de5cc44e690 |
children | fd0a3ac60b0e |
line wrap: on
line source
/* Copyright (C) 1996, 1997, 1998, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 John W. Eaton Copyright (C) 2009, 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include <vector> #include "data-conv.h" #include "lo-ieee.h" #include "lo-specfun.h" #include "lo-mappers.h" #include "mx-base.h" #include "mach-info.h" #include "oct-locbuf.h" #include "gripes.h" #include "oct-obj.h" #include "oct-stream.h" #include "ops.h" #include "ov-base.h" #include "ov-base-mat.h" #include "ov-base-mat.cc" #include "ov-complex.h" #include "ov-flt-complex.h" #include "ov-cx-mat.h" #include "ov-flt-cx-mat.h" #include "ov-re-mat.h" #include "ov-flt-re-mat.h" #include "ov-scalar.h" #include "ov-float.h" #include "pr-output.h" #include "ops.h" #include "byte-swap.h" #include "ls-oct-ascii.h" #include "ls-hdf5.h" #include "ls-utils.h" template class octave_base_matrix<FloatComplexNDArray>; DEFINE_OCTAVE_ALLOCATOR (octave_float_complex_matrix); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_float_complex_matrix, "float complex matrix", "single"); octave_base_value * octave_float_complex_matrix::try_narrowing_conversion (void) { octave_base_value *retval = 0; if (matrix.numel () == 1) { FloatComplex c = matrix (0); if (std::imag (c) == 0.0) retval = new octave_float_scalar (std::real (c)); else retval = new octave_float_complex (c); } else if (matrix.all_elements_are_real ()) retval = new octave_float_matrix (::real (matrix)); return retval; } double octave_float_complex_matrix::double_value (bool force_conversion) const { double retval = lo_ieee_nan_value (); if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex matrix", "real scalar"); if (rows () > 0 && columns () > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", "complex matrix", "real scalar"); retval = std::real (matrix (0, 0)); } else gripe_invalid_conversion ("complex matrix", "real scalar"); return retval; } float octave_float_complex_matrix::float_value (bool force_conversion) const { float retval = lo_ieee_float_nan_value (); if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex matrix", "real scalar"); if (rows () > 0 && columns () > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", "complex matrix", "real scalar"); retval = std::real (matrix (0, 0)); } else gripe_invalid_conversion ("complex matrix", "real scalar"); return retval; } Matrix octave_float_complex_matrix::matrix_value (bool force_conversion) const { Matrix retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex matrix", "real matrix"); retval = ::real (matrix.matrix_value ()); return retval; } FloatMatrix octave_float_complex_matrix::float_matrix_value (bool force_conversion) const { FloatMatrix retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex matrix", "real matrix"); retval = ::real (matrix.matrix_value ()); return retval; } Complex octave_float_complex_matrix::complex_value (bool) const { double tmp = lo_ieee_nan_value (); Complex retval (tmp, tmp); if (rows () > 0 && columns () > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", "complex matrix", "complex scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("complex matrix", "complex scalar"); return retval; } FloatComplex octave_float_complex_matrix::float_complex_value (bool) const { float tmp = lo_ieee_float_nan_value (); FloatComplex retval (tmp, tmp); if (rows () > 0 && columns () > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", "complex matrix", "complex scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("complex matrix", "complex scalar"); return retval; } ComplexMatrix octave_float_complex_matrix::complex_matrix_value (bool) const { return matrix.matrix_value (); } FloatComplexMatrix octave_float_complex_matrix::float_complex_matrix_value (bool) const { return FloatComplexMatrix (matrix.matrix_value ()); } boolNDArray octave_float_complex_matrix::bool_array_value (bool warn) const { if (matrix.any_element_is_nan ()) gripe_nan_to_logical_conversion (); else if (warn && (! matrix.all_elements_are_real () || real (matrix).any_element_not_one_or_zero ())) gripe_logical_conversion (); return mx_el_ne (matrix, FloatComplex (0.0)); } charNDArray octave_float_complex_matrix::char_array_value (bool frc_str_conv) const { charNDArray retval; if (! frc_str_conv) gripe_implicit_conversion ("Octave:num-to-str", "complex matrix", "string"); else { retval = charNDArray (dims ()); octave_idx_type nel = numel (); for (octave_idx_type i = 0; i < nel; i++) retval.elem (i) = static_cast<char>(std::real (matrix.elem (i))); } return retval; } FloatComplexNDArray octave_float_complex_matrix::float_complex_array_value (bool) const { return FloatComplexNDArray (matrix); } SparseMatrix octave_float_complex_matrix::sparse_matrix_value (bool force_conversion) const { SparseMatrix retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex matrix", "real matrix"); retval = SparseMatrix (::real (complex_matrix_value ())); return retval; } SparseComplexMatrix octave_float_complex_matrix::sparse_complex_matrix_value (bool) const { return SparseComplexMatrix (complex_matrix_value ()); } octave_value octave_float_complex_matrix::diag (octave_idx_type k) const { octave_value retval; if (k == 0 && matrix.ndims () == 2 && (matrix.rows () == 1 || matrix.columns () == 1)) retval = FloatComplexDiagMatrix (DiagArray2<FloatComplex> (matrix)); else retval = octave_base_matrix<FloatComplexNDArray>::diag (k); return retval; } bool octave_float_complex_matrix::save_ascii (std::ostream& os) { dim_vector d = dims (); if (d.length () > 2) { FloatComplexNDArray tmp = complex_array_value (); os << "# ndims: " << d.length () << "\n"; for (int i = 0; i < d.length (); i++) os << " " << d (i); os << "\n" << tmp; } else { // Keep this case, rather than use generic code above for backward // compatiability. Makes load_ascii much more complex!! os << "# rows: " << rows () << "\n" << "# columns: " << columns () << "\n"; os << complex_matrix_value (); } return true; } bool octave_float_complex_matrix::load_ascii (std::istream& is) { bool success = true; string_vector keywords(2); keywords[0] = "ndims"; keywords[1] = "rows"; std::string kw; octave_idx_type val = 0; if (extract_keyword (is, keywords, kw, val, true)) { if (kw == "ndims") { int mdims = static_cast<int> (val); if (mdims >= 0) { dim_vector dv; dv.resize (mdims); for (int i = 0; i < mdims; i++) is >> dv(i); if (is) { FloatComplexNDArray tmp(dv); is >> tmp; if (is) matrix = tmp; else { error ("load: failed to load matrix constant"); success = false; } } else { error ("load: failed to read dimensions"); success = false; } } else { error ("load: failed to extract number of dimensions"); success = false; } } else if (kw == "rows") { octave_idx_type nr = val; octave_idx_type nc = 0; if (nr >= 0 && extract_keyword (is, "columns", nc) && nc >= 0) { if (nr > 0 && nc > 0) { FloatComplexMatrix tmp (nr, nc); is >> tmp; if (is) matrix = tmp; else { error ("load: failed to load matrix constant"); success = false; } } else if (nr == 0 || nc == 0) matrix = FloatComplexMatrix (nr, nc); else panic_impossible (); } else { error ("load: failed to extract number of rows and columns"); success = false; } } else panic_impossible (); } else { error ("load: failed to extract number of rows and columns"); success = false; } return success; } bool octave_float_complex_matrix::save_binary (std::ostream& os, bool&) { dim_vector d = dims (); if (d.length() < 1) return false; // Use negative value for ndims to differentiate with old format!! int32_t tmp = - d.length(); os.write (reinterpret_cast<char *> (&tmp), 4); for (int i = 0; i < d.length (); i++) { tmp = d(i); os.write (reinterpret_cast<char *> (&tmp), 4); } FloatComplexNDArray m = complex_array_value (); save_type st = LS_FLOAT; if (d.numel () > 4096) // FIXME -- make this configurable. { float max_val, min_val; if (m.all_integers (max_val, min_val)) st = get_save_type (max_val, min_val); } const FloatComplex *mtmp = m.data (); write_floats (os, reinterpret_cast<const float *> (mtmp), st, 2 * d.numel ()); return true; } bool octave_float_complex_matrix::load_binary (std::istream& is, bool swap, oct_mach_info::float_format fmt) { char tmp; int32_t mdims; if (! is.read (reinterpret_cast<char *> (&mdims), 4)) return false; if (swap) swap_bytes<4> (&mdims); if (mdims < 0) { mdims = - mdims; int32_t di; dim_vector dv; dv.resize (mdims); for (int i = 0; i < mdims; i++) { if (! is.read (reinterpret_cast<char *> (&di), 4)) return false; if (swap) swap_bytes<4> (&di); dv(i) = di; } // Convert an array with a single dimension to be a row vector. // Octave should never write files like this, other software // might. if (mdims == 1) { mdims = 2; dv.resize (mdims); dv(1) = dv(0); dv(0) = 1; } if (! is.read (reinterpret_cast<char *> (&tmp), 1)) return false; FloatComplexNDArray m(dv); FloatComplex *im = m.fortran_vec (); read_floats (is, reinterpret_cast<float *> (im), static_cast<save_type> (tmp), 2 * dv.numel (), swap, fmt); if (error_state || ! is) return false; matrix = m; } else { int32_t nr, nc; nr = mdims; if (! is.read (reinterpret_cast<char *> (&nc), 4)) return false; if (swap) swap_bytes<4> (&nc); if (! is.read (reinterpret_cast<char *> (&tmp), 1)) return false; FloatComplexMatrix m (nr, nc); FloatComplex *im = m.fortran_vec (); octave_idx_type len = nr * nc; read_floats (is, reinterpret_cast<float *> (im), static_cast<save_type> (tmp), 2*len, swap, fmt); if (error_state || ! is) return false; matrix = m; } return true; } #if defined (HAVE_HDF5) bool octave_float_complex_matrix::save_hdf5 (hid_t loc_id, const char *name, bool) { dim_vector dv = dims (); int empty = save_hdf5_empty (loc_id, name, dv); if (empty) return (empty > 0); int rank = dv.length (); hid_t space_hid = -1, data_hid = -1, type_hid = -1; bool retval = true; FloatComplexNDArray m = complex_array_value (); OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); // Octave uses column-major, while HDF5 uses row-major ordering for (int i = 0; i < rank; i++) hdims[i] = dv (rank-i-1); space_hid = H5Screate_simple (rank, hdims, 0); if (space_hid < 0) return false; hid_t save_type_hid = H5T_NATIVE_FLOAT; #if HAVE_HDF5_INT2FLOAT_CONVERSIONS // hdf5 currently doesn't support float/integer conversions else { float max_val, min_val; if (m.all_integers (max_val, min_val)) save_type_hid = save_type_to_hdf5 (get_save_type (max_val, min_val)); } #endif /* HAVE_HDF5_INT2FLOAT_CONVERSIONS */ type_hid = hdf5_make_complex_type (save_type_hid); if (type_hid < 0) { H5Sclose (space_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (loc_id, name, type_hid, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (loc_id, name, type_hid, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Tclose (type_hid); return false; } hid_t complex_type_hid = hdf5_make_complex_type (H5T_NATIVE_FLOAT); if (complex_type_hid < 0) retval = false; if (retval) { FloatComplex *mtmp = m.fortran_vec (); if (H5Dwrite (data_hid, complex_type_hid, H5S_ALL, H5S_ALL, H5P_DEFAULT, mtmp) < 0) { H5Tclose (complex_type_hid); retval = false; } } H5Tclose (complex_type_hid); H5Dclose (data_hid); H5Tclose (type_hid); H5Sclose (space_hid); return retval; } bool octave_float_complex_matrix::load_hdf5 (hid_t loc_id, const char *name) { bool retval = false; dim_vector dv; int empty = load_hdf5_empty (loc_id, name, dv); if (empty > 0) matrix.resize(dv); if (empty) return (empty > 0); #if HAVE_HDF5_18 hid_t data_hid = H5Dopen (loc_id, name, H5P_DEFAULT); #else hid_t data_hid = H5Dopen (loc_id, name); #endif hid_t type_hid = H5Dget_type (data_hid); hid_t complex_type = hdf5_make_complex_type (H5T_NATIVE_FLOAT); if (! hdf5_types_compatible (type_hid, complex_type)) { H5Tclose (complex_type); H5Dclose (data_hid); return false; } hid_t space_id = H5Dget_space (data_hid); hsize_t rank = H5Sget_simple_extent_ndims (space_id); if (rank < 1) { H5Tclose (complex_type); H5Sclose (space_id); H5Dclose (data_hid); return false; } OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank); H5Sget_simple_extent_dims (space_id, hdims, maxdims); // Octave uses column-major, while HDF5 uses row-major ordering if (rank == 1) { dv.resize (2); dv(0) = 1; dv(1) = hdims[0]; } else { dv.resize (rank); for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--) dv(j) = hdims[i]; } FloatComplexNDArray m (dv); FloatComplex *reim = m.fortran_vec (); if (H5Dread (data_hid, complex_type, H5S_ALL, H5S_ALL, H5P_DEFAULT, reim) >= 0) { retval = true; matrix = m; } H5Tclose (complex_type); H5Sclose (space_id); H5Dclose (data_hid); return retval; } #endif void octave_float_complex_matrix::print_raw (std::ostream& os, bool pr_as_read_syntax) const { octave_print_internal (os, matrix, pr_as_read_syntax, current_print_indent_level ()); } mxArray * octave_float_complex_matrix::as_mxArray (void) const { mxArray *retval = new mxArray (mxSINGLE_CLASS, dims (), mxCOMPLEX); float *pr = static_cast<float *> (retval->get_data ()); float *pi = static_cast<float *> (retval->get_imag_data ()); mwSize nel = numel (); const FloatComplex *p = matrix.data (); for (mwIndex i = 0; i < nel; i++) { pr[i] = std::real (p[i]); pi[i] = std::imag (p[i]); } return retval; } octave_value octave_float_complex_matrix::map (unary_mapper_t umap) const { switch (umap) { // Mappers handled specially. case umap_real: return ::real (matrix); case umap_imag: return ::imag (matrix); case umap_conj: return ::conj (matrix); #define ARRAY_METHOD_MAPPER(UMAP, FCN) \ case umap_ ## UMAP: \ return octave_value (matrix.FCN ()) ARRAY_METHOD_MAPPER (abs, abs); ARRAY_METHOD_MAPPER (isnan, isnan); ARRAY_METHOD_MAPPER (isinf, isinf); ARRAY_METHOD_MAPPER (finite, isfinite); #define ARRAY_MAPPER(UMAP, TYPE, FCN) \ case umap_ ## UMAP: \ return octave_value (matrix.map<TYPE> (FCN)) ARRAY_MAPPER (acos, FloatComplex, ::acos); ARRAY_MAPPER (acosh, FloatComplex, ::acosh); ARRAY_MAPPER (angle, float, std::arg); ARRAY_MAPPER (arg, float, std::arg); ARRAY_MAPPER (asin, FloatComplex, ::asin); ARRAY_MAPPER (asinh, FloatComplex, ::asinh); ARRAY_MAPPER (atan, FloatComplex, ::atan); ARRAY_MAPPER (atanh, FloatComplex, ::atanh); ARRAY_MAPPER (ceil, FloatComplex, ::ceil); ARRAY_MAPPER (cos, FloatComplex, std::cos); ARRAY_MAPPER (cosh, FloatComplex, std::cosh); ARRAY_MAPPER (exp, FloatComplex, std::exp); ARRAY_MAPPER (expm1, FloatComplex, ::expm1); ARRAY_MAPPER (fix, FloatComplex, ::fix); ARRAY_MAPPER (floor, FloatComplex, ::floor); ARRAY_MAPPER (log, FloatComplex, std::log); ARRAY_MAPPER (log2, FloatComplex, xlog2); ARRAY_MAPPER (log10, FloatComplex, std::log10); ARRAY_MAPPER (log1p, FloatComplex, ::log1p); ARRAY_MAPPER (round, FloatComplex, xround); ARRAY_MAPPER (roundb, FloatComplex, xroundb); ARRAY_MAPPER (signum, FloatComplex, ::signum); ARRAY_MAPPER (sin, FloatComplex, std::sin); ARRAY_MAPPER (sinh, FloatComplex, std::sinh); ARRAY_MAPPER (sqrt, FloatComplex, std::sqrt); ARRAY_MAPPER (tan, FloatComplex, std::tan); ARRAY_MAPPER (tanh, FloatComplex, std::tanh); ARRAY_MAPPER (isna, bool, octave_is_NA); default: return octave_base_value::map (umap); } }