Mercurial > hg > octave-nkf
view scripts/statistics/base/var.m @ 14273:bedccd0abe39
Add comment in var.m docs about behaviour when input is a scalar
* var.m: Add comment in docs about behaviour when input is a scalar
author | Carlo de Falco <kingcrimson@tiscali.it> |
---|---|
date | Sat, 28 Jan 2012 13:25:20 +0100 |
parents | 72c96de7a403 |
children | 34af9f9ff98b |
line wrap: on
line source
## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} var (@var{x}) ## @deftypefnx {Function File} {} var (@var{x}, @var{opt}) ## @deftypefnx {Function File} {} var (@var{x}, @var{opt}, @var{dim}) ## Compute the variance of the elements of the vector @var{x}. ## @tex ## $$ ## {\rm var} (x) = \sigma^2 = {\sum_{i=1}^N (x_i - \bar{x})^2 \over N - 1} ## $$ ## where $\bar{x}$ is the mean value of $x$. ## @end tex ## @ifnottex ## ## @example ## @group ## var (x) = 1/(N-1) SUM_i (x(i) - mean(x))^2 ## @end group ## @end example ## ## @end ifnottex ## If @var{x} is a matrix, compute the variance for each column ## and return them in a row vector. ## ## The argument @var{opt} determines the type of normalization to use. ## Valid values are ## ## @table @asis ## @item 0: ## normalize with @math{N-1}, provides the best unbiased estimator of the ## variance [default] ## ## @item 1: ## normalizes with @math{N}, this provides the second moment around the mean ## @end table ## ## If @math{N==1} the value of @var{opt} is ignored and normalization ## by @math{N} is used. ## ## If the optional argument @var{dim} is given, operate along this dimension. ## @seealso{cov, std, skewness, kurtosis, moment} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Compute variance function retval = var (x, opt = 0, dim) if (nargin < 1 || nargin > 3) print_usage (); endif if (! (isnumeric (x) || islogical (x))) error ("var: X must be a numeric vector or matrix"); endif if (isempty (opt)) opt = 0; endif if (opt != 0 && opt != 1) error ("var: normalization OPT must be 0 or 1"); endif nd = ndims (x); sz = size (x); if (nargin < 3) ## Find the first non-singleton dimension. (dim = find (sz > 1, 1)) || (dim = 1); else if (!(isscalar (dim) && dim == fix (dim)) || !(1 <= dim && dim <= nd)) error ("var: DIM must be an integer and a valid dimension"); endif endif n = sz(dim); if (n == 1) if (isa (x, 'single')) retval = zeros (sz, 'single'); else retval = zeros (sz); endif elseif (numel (x) > 0) retval = sumsq (center (x, dim), dim) / (n - 1 + opt); else error ("var: X must not be empty"); endif endfunction %!assert(var (13), 0); %!assert(var (single(13)), single(0)); %!assert(var ([1,2,3]), 1); %!assert(var ([1,2,3], 1), 2/3, eps); %!assert(var ([1,2,3], [], 1), [0,0,0]); %% Test input validation %!error var () %!error var (1,2,3,4) %!error var (['A'; 'B']) %!error var (1, -1); %!error var ([],1)