Mercurial > hg > octave-nkf
view doc/interpreter/arith.txi @ 5725:c02d2aa25cfd
[project @ 2006-04-01 00:40:18 by jwe]
author | jwe |
---|---|
date | Sat, 01 Apr 2006 00:40:18 +0000 |
parents | d5667eaf8859 |
children | 6ab0a8767780 |
line wrap: on
line source
@c Copyright (C) 1996, 1997 John W. Eaton @c This is part of the Octave manual. @c For copying conditions, see the file gpl.texi. @node Arithmetic @chapter Arithmetic Unless otherwise noted, all of the functions described in this chapter will work for real and complex scalar or matrix arguments. @menu * Utility Functions:: * Complex Arithmetic:: * Trigonometry:: * Sums and Products:: * Special Functions:: * Coordinate Transformations:: * Mathematical Constants:: @end menu @node Utility Functions @section Utility Functions The following functions are available for working with complex numbers. Each expects a single argument. They are called @dfn{mapping functions} because when given a matrix argument, they apply the given function to each element of the matrix. @DOCSTRING(ceil) @DOCSTRING(exp) @DOCSTRING(fix) @DOCSTRING(floor) @DOCSTRING(gcd) @DOCSTRING(lcm) @DOCSTRING(log) @DOCSTRING(log10) @DOCSTRING(log2) @DOCSTRING(max) @DOCSTRING(min) @DOCSTRING(mod) @DOCSTRING(nextpow2) @DOCSTRING(pow2) @DOCSTRING(rem) @DOCSTRING(round) @DOCSTRING(sign) @DOCSTRING(sqrt) @node Complex Arithmetic @section Complex Arithmetic The following functions are available for working with complex numbers. Each expects a single argument. Given a matrix they work on an element by element basis. In the descriptions of the following functions, @iftex @tex $z$ is the complex number $x + iy$, where $i$ is defined as $\sqrt{-1}$. @end tex @end iftex @ifinfo @var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is defined as @code{sqrt (-1)}. @end ifinfo @DOCSTRING(abs) @DOCSTRING(arg) @DOCSTRING(conj) @DOCSTRING(imag) @DOCSTRING(real) @node Trigonometry @section Trigonometry Octave provides the following trigonometric functions. Angles are specified in radians. To convert from degrees to radians multipy by @iftex @tex $\pi/180$ @end tex @end iftex @ifinfo @code{pi/180} @end ifinfo (e.g. @code{sin (30 * pi/180)} returns the sine of 30 degrees). @DOCSTRING(sin) @DOCSTRING(cos) @DOCSTRING(tan) @DOCSTRING(sec) @DOCSTRING(csc) @DOCSTRING(cot) @DOCSTRING(asin) @DOCSTRING(acos) @DOCSTRING(atan) @DOCSTRING(asec) @DOCSTRING(acsc) @DOCSTRING(acot) @DOCSTRING(sinh) @DOCSTRING(cosh) @DOCSTRING(tanh) @DOCSTRING(sech) @DOCSTRING(csch) @DOCSTRING(coth) @DOCSTRING(asinh) @DOCSTRING(acosh) @DOCSTRING(atanh) @DOCSTRING(asech) @DOCSTRING(acsch) @DOCSTRING(acoth) Each of these functions expect a single argument. For matrix arguments, they work on an element by element basis. For example, @example @group sin ([1, 2; 3, 4]) @result{} 0.84147 0.90930 0.14112 -0.75680 @end group @end example @DOCSTRING(atan2) @node Sums and Products @section Sums and Products @DOCSTRING(sum) @DOCSTRING(prod) @DOCSTRING(cumsum) @DOCSTRING(cumprod) @DOCSTRING(sumsq) @node Special Functions @section Special Functions @DOCSTRING(besselj) @DOCSTRING(airy) @DOCSTRING(beta) @DOCSTRING(betainc) @DOCSTRING(bincoeff) @DOCSTRING(erf) @DOCSTRING(erfc) @DOCSTRING(erfinv) @DOCSTRING(gamma) @DOCSTRING(gammainc) @DOCSTRING(lgamma) @DOCSTRING(cross) @DOCSTRING(commutation_matrix) @DOCSTRING(duplication_matrix) @node Coordinate Transformations @section Coordinate Transformations @DOCSTRING(cart2pol) @DOCSTRING(pol2cart) @DOCSTRING(cart2sph) @DOCSTRING(sph2cart) @node Mathematical Constants @section Mathematical Constants @DOCSTRING(I) @DOCSTRING(Inf) @DOCSTRING(NaN) @DOCSTRING(pi) @DOCSTRING(e) @DOCSTRING(eps) @DOCSTRING(realmax) @DOCSTRING(realmin)