Mercurial > hg > octave-nkf
view scripts/plot/draw/private/__ezplot__.m @ 20709:c0566df8cde3 stable
Generate correct ezplot for 2-input functions (bug #46004).
* __ezplot__.m: Convert string name of m-files or built-in functions to a
function handle rather than an inline function. Eliminate 1/3rd of input
processing that was for string inputs. Use nargin to find whether input
function uses 2 inputs.
author | Rik <rik@octave.org> |
---|---|
date | Tue, 22 Sep 2015 04:15:51 -0700 |
parents | 4197fc428c7d |
children |
line wrap: on
line source
## Copyright (C) 2007-2015 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{h}, @var{needusage}] =} __ezplot__ (@var{pltfunc}, @var{varargin}) ## Undocumented internal function. ## @end deftypefn ## Overview: This function is the back-end for the 9 ez* plot functions. ## As such, most of the function is actually dedicated to sorting ## out the inputs and verifying that the particular ez* function ## called was called correctly. The actual plotting occurs near ## the end in an unwind_protect block. function [h, needusage] = __ezplot__ (pltfunc, varargin) ezfunc = ["ez" pltfunc]; [hax, varargin, nargin] = __plt_get_axis_arg__ (ezfunc, varargin{:}); ## Define outputs early in case of shorting out of function with return; h = []; needusage = false; if (nargin < 1) needusage = true; return; endif iscontour = strncmp (pltfunc, "contour", 7); ## Defaults for ezplot isplot = true; isplot3 = false; ispolar = false; nargs = 1; switch (pltfunc) case "plot" ## defaults already set case "plot3" isplot = false; isplot3 = true; case "polar" isplot = false; ispolar = true; otherwise ## contour, mesh, surf plots isplot = false; nargs = 2; endswitch parametric = false; fun = varargin{1}; if (ischar (fun)) if (exist (fun, "file") || exist (fun, "builtin")) fun = str2func (fun); # convert to function handle else fun = vectorize (inline (fun)); # convert to inline function endif endif if (strcmp (typeinfo (fun), "inline function")) argids = argnames (fun); if (isplot && length (argids) == 2) nargs = 2; elseif (numel (argids) != nargs) error ("%s: expecting a function of %d arguments", ezfunc, nargs); endif fun = vectorize (fun); fstr = formula (fun); if (isplot) xarg = argids{1}; if (nargs == 2) yarg = argids{2}; else yarg = ""; endif elseif (isplot3) xarg = "x"; yarg = "y"; elseif (isplot || ispolar) xarg = ""; yarg = ""; else xarg = argids{1}; yarg = argids{2}; endif elseif (isa (fun, "function_handle")) fstr = func2str (fun); idx = index (fstr, ')'); if (idx != 0) args = regexp (fstr(3:(idx-1)), '\w+', 'match'); fstr = fstr(idx+2:end); # remove '@(x) ' from string name else args = {"x"}; try if (builtin ("nargin", fun) == 2) args{2} = "y"; endif end_try_catch endif if (isplot && length (args) == 2) nargs = 2; elseif (numel (args) != nargs) error ("%s: expecting a function of %d arguments", ezfunc, nargs); endif if (isplot) xarg = args{1}; if (nargs == 2) yarg = args{2}; else yarg = ""; endif elseif (isplot3) xarg = "x"; yarg = "y"; elseif (ispolar) xarg = ""; yarg = ""; else xarg = args{1}; yarg = args{2}; endif else error ("%s: expecting string, inline function, or function handle", ezfunc); endif if (nargin > 2 || (nargin == 2 && isplot)) funx = fun; fstrx = fstr; funy = varargin{2}; if (ischar (funy) && ! strcmp (funy, "circ") && ! strcmp (funy, "animate")) parametric = true; if (exist (funy, "file") || exist (funy, "builtin")) funy = inline ([funy "(t)"]); else funy = vectorize (inline (funy)); endif if (numel (argnames (funy)) != nargs) error ("%s: expecting a function of %d arguments", ezfunc, nargs); endif fstry = formula (funy); elseif (strcmp (typeinfo (funy), "inline function")) parametric = true; if (numel (argnames (funy)) != nargs) error ("%s: expecting a function of %d arguments", ezfunc, nargs); endif funy = vectorize (funy); fstry = formula (funy); elseif (isa (funy, "function_handle")) parametric = true; fstry = func2str (funy); idx = index (fstry, ')'); if (idx != 0) args = regexp (fstry(3:(idx-1)), '\w+', 'match'); fstry = fstry(idx+2:end); # remove '@(x) ' from string name else args = {"y"}; endif if (numel (args) != nargs) error ("%s: expecting a function of %d arguments", ezfunc, nargs); endif endif if (! parametric && isplot3) needusage = true; # Can't call non-parametric ezplot3 return; elseif (parametric && isplot) if (nargs == 2) error ("%s: can not define a parametric function in this manner", ezfunc); else xarg = "x"; yarg = "y"; endif elseif (parametric) funz = varargin{3}; if (ischar (funz) && ! strcmp (funz, "circ") && ! strcmp (funz, "animate")) if (exist (funz, "file") || exist (funz, "builtin")) funz = inline ([funz "(t)"]); else funz = vectorize (inline (funz)); endif if (numel (argnames (funz)) > nargs) error ("%s: expecting a function of %d arguments", ezfunc, nargs); endif fstrz = formula (funz); elseif (strcmp (typeinfo (funz), "inline function")) if (numel (argnames (funz)) != nargs) error ("%s: expecting a function of %d arguments", ezfunc, nargs); endif funz = vectorize (funz); fstrz = formula (funz); elseif (isa (funz, "function_handle")) fstrz = func2str (funz); idx = index (fstrz, ')'); if (idx != 0) args = regexp (fstrz(3:(idx-1)), '\w+', 'match'); fstrz = fstrz(idx+2:end); # remove '@(x) ' from string name else args = {"z"}; endif if (numel (args) != nargs) error ("%s: expecting a function of %d arguments", ezfunc, nargs); endif else error ("%s: parametric plots expect 3 functions", ezfunc); endif endif endif if ((isplot && nargs != 2) || isplot3 || ispolar) n = 500; # default for point-style functions like plot else n = 60; # default for meshgrid style functions like contour, surf endif domain = []; circ = false; animate = false; if (parametric) if (isplot) iarg = 3; else iarg = 4; endif else iarg = 2; endif while (iarg <= nargin) arg = varargin{iarg++}; if (ischar (arg) && strcmp (arg, "circ")) circ = true; elseif (ischar (arg) && strcmp (arg, "animate")) animate = true; elseif (isscalar (arg)) n = arg; elseif (numel (arg) == 2) domain = [arg(1) arg(2) arg(1) arg(2)]; elseif (numel (arg) == 4) domain = arg(:).'; else error ("%s: expecting scalar, 2-, or 4-element vector", ezfunc); endif endwhile if (circ && (iscontour || isplot3 || isplot)) needusage = true; return; elseif (circ && parametric) error ("%s: can not have both circular domain and parametric function", ezfunc); endif if (animate && ! isplot3) error ("%s: animate option only valid for ezplot3", ezfunc); endif if (parametric) ## Make the label strings pretty by removing extra spaces between base ## and exponent, the '.' in vectorized code, and the '*' for multiply. fstrx = regexprep (regexprep (regexprep (fstrx, '\s*\.?(?:\^|\*\*)\s*','^'), '\.([/+-])', '$1'), '\s*\.?\*\s*', ' '); fstry = regexprep (regexprep (regexprep (fstry, '\s*\.?(?:\^|\*\*)\s*','^'), '\.([/+-])', '$1'), '\s*\.?\*\s*', ' '); if (isplot) fstr = ["x = " fstrx ", y = " fstry]; else fstrz = regexprep (regexprep (regexprep (fstrz, '\s*\.?(?:\^|\*\*)\s*','^'), '\.([/+-])', '$1'), '\s*\.?\*\s*', ' '); fstr = ["x = " fstrx ",y = " fstry ", z = " fstrz]; endif else fstr = regexprep (regexprep (regexprep (fstr, '\s*\.?(?:\^|\*\*)\s*','^'), '\.([/+-])', '$1'), '\s*\.?\*\s*', ' '); if (isplot && nargs == 2) fstr = [fstr " = 0"]; # make title string of implicit function endif endif if (isempty (domain)) auto_domain = true; if (isplot3 || ispolar) domain = [0, 2*pi, 0, 2*pi]; else domain = [-2*pi, 2*pi, -2*pi, 2*pi]; endif else auto_domain = false; endif auto_domain_done = false; do domain_ok = true; if ((isplot && nargs == 1) || isplot3 || ispolar) X = linspace (domain(1), domain(2), n); elseif (isplot && numel (domain) == 2) x = linspace (domain(1), domain(2), n); [X, Y] = meshgrid (x, x); elseif (circ) ## To plot on circular domain develop grid in polar coordinates ## and then switch these to Cartesian coordinates. cent = [domain(1) + domain(2), domain(3) + domain(4)] / 2; rmax = sqrt ((domain(2) - cent(1))^2 + (domain(4) - cent(2))^2); r = linspace (0, rmax, n); t = linspace (0, 2*pi, n); [T, R] = meshgrid (t, r); X = R .* cos (T) + cent(1); Y = R .* sin (T) + cent(2); domain = [-rmax+cent(1), +rmax+cent(1), -rmax+cent(2), +rmax+cent(2)]; else # contour, mesh, surf plots x = linspace (domain(1), domain(2), n); y = linspace (domain(3), domain(4), n); [X, Y] = meshgrid (x, y); endif if (parametric) if (isplot) XX = feval (funx, X); Z = feval (funy, X); X = XX; elseif (isplot3) Z = feval (funz, X); XX = feval (funx, X); YY = feval (funy, X); X = XX; Y = YY; else Z = feval (funz, X, Y); XX = feval (funx, X, Y); YY = feval (funy, X, Y); X = XX; Y = YY; ## Eliminate the singularities X = __eliminate_sing__ (X); Y = __eliminate_sing__ (Y); Z = __eliminate_sing__ (Z); endif else ## non-parametric plots if (isplot && nargs == 2) Z = feval (fun, X, Y); ## Matlab returns line objects for this case and so can't call ## contour directly as it returns patch objects to allow colormaps ## to work with contours. Therefore recreate the lines from the ## output for contourc, and store in cell arrays. [c, ~] = contourc (X, Y, Z, [0, 0]); i = 1; XX = YY = {}; while (i < length (c)) clev = c(1,i); clen = c(2,i); XX = [XX, {c(1, i+1:i+clen)}]; YY = [YY, {c(2, i+1:i+clen)}]; i += clen+1; endwhile else if (ispolar) Z = feval (fun, X); ## FIXME: Why aren't singularities eliminated for polar plots? elseif (isplot) Z = feval (fun, X); ## Eliminate the singularities Z = __eliminate_sing__ (Z); domain = find_valid_domain (X, [], Z); elseif (iscontour) Z = feval (fun, X, Y); Z = __eliminate_sing__ (Z); else # mesh, surf plots Z = feval (fun, X, Y); Z = __eliminate_sing__ (Z); if (circ) ## Use domain calculated at the start. ## The X, Y grids are non-monotonic after conversion from polar ## coordinates and find_valid_domain fails. elseif (auto_domain && ! auto_domain_done) valid_domain = find_valid_domain (X, Y, Z); domain_ok = isequal (domain, valid_domain); domain = valid_domain; auto_domain_done = true; # ensures only 1 round of do loop done else if (! auto_domain_done) domain = find_valid_domain (X, Y, Z); endif endif endif endif endif until (domain_ok) ## Now, actually call the correct plot function with valid data and domain. oldfig = []; if (! isempty (hax)) oldfig = get (0, "currentfigure"); endif unwind_protect hax = newplot (hax); if (iscontour) [~, h] = feval (pltfunc, hax, X, Y, Z); elseif (isplot && nargs == 2) h = zeros (length (XX), 1); hold_state = get (hax, "nextplot"); for i = 1 : length (XX) h(i) = plot(hax, XX{i}, YY{i}); if (i == 1) set (hax, "nextplot", "add"); endif endfor set (hax, "nextplot", hold_state); axis (hax, domain); elseif (isplot || ispolar) h = feval (pltfunc, hax, X, Z); if (isplot) if (! parametric) axis (hax, domain); else axis ("equal"); endif endif elseif (isplot3) if (animate) ## draw animation, then replace with true plot3 comet3 (hax, X, Y, Z, .05); endif h = feval (pltfunc, hax, X, Y, Z); set (hax, "box", "off"); grid (hax, "on"); zlabel (hax, "z"); else # mesh and surf plots h = feval (pltfunc, hax, X, Y, Z); ## FIXME: surf, mesh should really do a better job of setting zlim if (! parametric) axis (hax, domain); endif endif xlabel (hax, xarg); ylabel (hax, yarg); title (hax, fstr); unwind_protect_cleanup if (! isempty (oldfig)) set (0, "currentfigure", oldfig); endif end_unwind_protect endfunction ## Eliminate bad data (complex values, infinities, singularities) function x = __eliminate_sing__ (x) if (iscomplex (x)) x(imag (x) != 0) = NaN; endif x(isinf (x)) = NaN; ## High rates of curvature are treated as singularities threshold = 0.2 * (max (x(:)) - min (x(:))); x(abs (del2 (x)) > threshold) = NaN; endfunction ## Find: 1) range of function where there are not NaN values, ## 2) function is changing (not just flat surface) function domain = find_valid_domain (X, Y, Z); if (isvector (Z)) ## 2-D data for isplot domain = [X(1) X(end)]; ## Guess a range which includes the "mass" of the data by using a ## median-based approach. The center 3/4 of the data is used to ## determine the range of the data. ## This seems to be vaguely what Matlab does, but can't be sure. XX = sort (Z(isfinite (Z))); if (length (X) > 4) irlo = XX(fix (1/8 * length (XX))); irhi = XX(fix (7/8 * length (XX))); d = irhi - irlo; domain(3) = max (XX(1) - d/8, irlo - d); domain(4) = min (XX(end) + d/8, irhi + d); else domain(3:4) = [XX(1), XX(end)]; endif #{ ## FIXME: Old algorithm for removing singularities ## Deprecated in 3.8. Can be removed if no problems appear in ezplot. idx = 2 : length (Z); idx = find (((Z(idx) > yrange(2) / 2) & (Z(idx-1) < yrange(1) / 2)) | ((Z(idx) < yrange(1) / 2) & (Z(idx-1) > yrange(2) / 2))); Z(idx) = NaN; #} else ## 3-D data such as mesh, surf Zfinite = ! isnan (Z); Zrows = any (Zfinite, 2); rmin = find (Zrows, 1, "first"); rmax = find (Zrows, 1, "last"); Zcols = any (Zfinite, 1); cmin = find (Zcols, 1, "first"); cmax = find (Zcols, 1, "last"); ## Handle nasty case of all NaNs if (isempty (rmin)) rmin = 1, rmax = rows (Z); endif if (isempty (cmin)) cmin = 1, cmax = columns (Z); endif if ( ! any (isnan (Z([rmin, rmax],:)(:))) && ! any (isnan (Z(:, [cmin, cmax])(:)))) ## Exclude surfaces along borders which are flat (gradient =~ 0). ## Technically, this calculation might be better done with actual ## deltaX, deltaY values. But, data is usually meshgridded ## (constant spacing) so working with deltaROW#, deltaCOL# is fine. [Zx, Zy] = gradient (Z(rmin:rmax, cmin:cmax)); Zgrad = sqrt (Zx.^2 + Zy.^2); slope = ((max (Z(:)) - min (Z(:))) / sqrt ((rmax - rmin)^2 + (cmax - cmin)^2)); slope /= 125; # threshold for discarding points. Zrows = any (Zgrad > slope, 2); rmin += find (Zrows, 1, "first") - 1; rmax += find (Zrows, 1, "last") - rows (Zrows); Zcols = any (Zgrad > slope, 1); cmin += find (Zcols, 1, "first") - 1; cmax += find (Zcols, 1, "last") - columns (Zcols); endif domain = [X(1,cmin) X(1,cmax) Y(rmin,1) Y(rmax,1)]; endif endfunction