Mercurial > hg > octave-nkf
view scripts/specfun/nchoosek.m @ 9141:c1fff751b5a8
Update section 17.1 (Utility Functions) of arith.txi
Split section into "Exponents and Logarithms" and "Utility Functions"
Use Tex in many more of the doc strings for pretty printing in pdf format.
author | Rik <rdrider0-list@yahoo.com> |
---|---|
date | Mon, 20 Apr 2009 17:16:09 -0700 |
parents | 1bf0ce0930be |
children | 923c7cb7f13f |
line wrap: on
line source
## Copyright (C) 2001, 2006, 2007, 2009 Rolf Fabian and Paul Kienzle ## Copyright (C) 2008 Jaroslav Hajek ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{c} =} nchoosek (@var{n}, @var{k}) ## ## Compute the binomial coefficient or all combinations of @var{n}. ## If @var{n} is a scalar then, calculate the binomial coefficient ## of @var{n} and @var{k}, defined as ## ## @iftex ## @tex ## $$ ## {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!} ## = {n! \over k! (n-k)!} ## $$ ## @end tex ## @end iftex ## @ifnottex ## ## @example ## @group ## / \ ## | n | n (n-1) (n-2) @dots{} (n-k+1) n! ## | | = ------------------------- = --------- ## | k | k! k! (n-k)! ## \ / ## @end group ## @end example ## @end ifnottex ## ## If @var{n} is a vector generate all combinations of the elements ## of @var{n}, taken @var{k} at a time, one row per combination. The ## resulting @var{c} has size @code{[nchoosek (length (@var{n}), ## @var{k}), @var{k}]}. ## ## @code{nchoosek} works only for nonnegative integer arguments; use ## @code{bincoeff} for non-integer scalar arguments and for using vector ## arguments to compute many coefficients at once. ## ## @seealso{bincoeff} ## @end deftypefn ## Author: Rolf Fabian <fabian@tu-cottbus.de> ## Author: Paul Kienzle <pkienzle@users.sf.net> ## Author: Jaroslav Hajek function A = nchoosek (v, k) if (nargin != 2 || !isnumeric(k) || !isnumeric(v) || !isscalar(k) || (!isscalar(v) && !isvector(v))) print_usage (); endif if ((isscalar(v) && v < k) || k < 0 || k != round(k) || any (v < 0 || v != round(v))) error ("nchoosek: args are nonnegative integers with V not less than K"); endif n = length (v); if (n == 1) ## Improve precision at next step. k = min (k, v-k); A = round (prod ((v-k+1:v)./(1:k))); if (A*2*k*eps >= 0.5) warning ("nchoosek", "nchoosek: possible loss of precision"); endif elseif (k == 0) A = []; elseif (k == 1) A = v(:); elseif (k == n) A = v(:).'; elseif (k > n) A = zeros (0, k, class (v)); else p = cell (1, k); ## Hack: do the op in the smallest integer class possible to avoid ## moving too much data. if (n < intmax ("uint8")) cl = "uint8"; elseif (n < intmax ("uint16")) cl = "uint16"; elseif (n < intmax ("uint32")) cl = "uint32"; else ## This would exhaust memory anyway. cl = "double"; endif ## Use a generalized Pascal triangle. Traverse backwards to keep ## alphabetical order. for i = 1:k p{i} = zeros (0, i, cl); endfor s = ones (1, 1, cl); p{1} = n*s; for j = n-1:-1:1 for i = k:-1:2 q = p{i-1}; p{i} = [[repmat(s*j, rows (p{i-1}), 1), p{i-1}]; p{i}]; endfor p{1} = [j;p{1}]; endfor v = v(:); A = v(p{k}); endif endfunction %!warning (nchoosek(100,45)); %!error (nchoosek(100,45.5)); %!error (nchoosek(100,145)); %!assert (nchoosek(80,10), bincoeff(80,10)) %!assert (nchoosek(1:5,3),[1:3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2:4;2,3,5;2,4,5;3:5])