Mercurial > hg > octave-nkf
view scripts/linear-algebra/rank.m @ 14872:c2dbdeaa25df
maint: use rows() and columns() to clarify m-files.
* gradient.m, interp1q.m, rat.m, tsearchn.m, image.m, imwrite.m, area.m,
contourc.m, hist.m, isocolors.m, isonormals.m, meshz.m, print.m, __bar__.m,
__go_draw_axes__.m, __interp_cube__.m, __marching_cube__.m, __patch__.m,
__print_parse_opts__.m, __quiver__.m, rose.m, shrinkfaces.m, stairs.m,
surfnorm.m, tetramesh.m, text.m, deconv.m, spline.m, intersect.m, setdiff.m,
setxor.m, union.m, periodogram.m, pcg.m, perms.m: Replace size (x,1) with
rows (x) and size(x,2) with columns(x).
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Tue, 17 Jul 2012 13:34:19 -0700 |
parents | f3d52523cde1 |
children | 3c20fb2aa419 |
line wrap: on
line source
## Copyright (C) 1993-2012 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} rank (@var{A}) ## @deftypefnx {Function File} {} rank (@var{A}, @var{tol}) ## Compute the rank of @var{A}, using the singular value decomposition. ## The rank is taken to be the number of singular values of @var{A} that ## are greater than the specified tolerance @var{tol}. If the second ## argument is omitted, it is taken to be ## ## @example ## tol = max (size (@var{A})) * sigma(1) * eps; ## @end example ## ## @noindent ## where @code{eps} is machine precision and @code{sigma(1)} is the largest ## singular value of @var{A}. ## @end deftypefn ## Author: jwe function retval = rank (A, tol) if (nargin == 1) sigma = svd (A); if (isempty (sigma)) tolerance = 0; else if (isa (A, "single")) tolerance = max (size (A)) * sigma (1) * eps ("single"); else tolerance = max (size (A)) * sigma (1) * eps; endif endif elseif (nargin == 2) sigma = svd (A); tolerance = tol; else print_usage (); endif retval = sum (sigma > tolerance); endfunction %!test %! A = [1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12; %! 1 2 3.1 4 5 6 7; %! 2 3 4 5 6 7 8; %! 3 4 5 6 7 8 9; %! 4 5 6 7 8 9 10; %! 5 6 7 8 9 10 11]; %! assert (rank (A), 4); %!test %! A = [1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12; %! 1 2 3.0000001 4 5 6 7; %! 4 5 6 7 8 9 12.00001; %! 3 4 5 6 7 8 9; %! 4 5 6 7 8 9 10; %! 5 6 7 8 9 10 11]; %! assert (rank (A), 4); %!test %! A = [1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12; %! 1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12.00001; %! 3 4 5 6 7 8 9; %! 4 5 6 7 8 9 10; %! 5 6 7 8 9 10 11]; %! assert (rank (A), 3); %!test %! A = [1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12; %! 1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12; %! 3 4 5 6 7 8 9; %! 4 5 6 7 8 9 10; %! 5 6 7 8 9 10 11]; %! assert (rank (A), 3); %!test %! A = eye (100); %! assert (rank (A), 100); %!test %! A = [1, 2, 3; 1, 2.001, 3; 1, 2, 3.0000001]; %! assert (rank (A), 3); %! assert (rank (A,0.0009), 1); %! assert (rank (A,0.0006), 2); %! assert (rank (A,0.00000002), 3);