Mercurial > hg > octave-nkf
view scripts/polynomial/polyval.m @ 20752:c547458dc10e
eliminate error_state from most header files
* defun-int.h, event-queue.h, graphics.in.h, oct-handle.h,
ov-classdef.h, misc/f77-fcn.h, unwind-prot.h:
Eliminate use of global error_state variable.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 03 Oct 2015 13:20:28 -0400 |
parents | f1d0f506ee78 |
children |
line wrap: on
line source
## Copyright (C) 1994-2015 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{y} =} polyval (@var{p}, @var{x}) ## @deftypefnx {Function File} {@var{y} =} polyval (@var{p}, @var{x}, [], @var{mu}) ## @deftypefnx {Function File} {[@var{y}, @var{dy}] =} polyval (@var{p}, @var{x}, @var{s}) ## @deftypefnx {Function File} {[@var{y}, @var{dy}] =} polyval (@var{p}, @var{x}, @var{s}, @var{mu}) ## ## Evaluate the polynomial @var{p} at the specified values of @var{x}. ## ## If @var{x} is a vector or matrix, the polynomial is evaluated for each of ## the elements of @var{x}. ## ## When @var{mu} is present, evaluate the polynomial for ## (@var{x}-@var{mu}(1))/@var{mu}(2). ## ## In addition to evaluating the polynomial, the second output represents the ## prediction interval, @var{y} +/- @var{dy}, which contains at least 50% of ## the future predictions. To calculate the prediction interval, the ## structured variable @var{s}, originating from @code{polyfit}, must be ## supplied. ## ## @seealso{polyvalm, polyaffine, polyfit, roots, poly} ## @end deftypefn ## Author: Tony Richardson <arichard@stark.cc.oh.us> ## Created: June 1994 ## Adapted-By: jwe function [y, dy] = polyval (p, x, s = [], mu) if (nargin < 2 || nargin > 4 || (nargout == 2 && nargin < 3)) print_usage (); endif if (isempty (x)) y = []; return; elseif (isempty (p)) y = zeros (size (x)); return; elseif (! isvector (p)) error ("polyval: first argument must be a vector"); endif if (nargin > 3) x = (x - mu(1)) / mu(2); endif n = length (p) - 1; y = p(1) * ones (size (x)); for i = 2:n+1 y = y .* x + p(i); endfor if (nargout == 2) ## Note: the F-Distribution is generally considered to be single-sided. ## http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm ## t = finv (1-alpha, s.df, s.df); ## dy = t * sqrt (1 + sumsq (A/s.R, 2)) * s.normr / sqrt (s.df) ## If my inference is correct, then t must equal 1 for polyval. ## This is because finv (0.5, n, n) = 1.0 for any n. try k = numel (x); A = (x(:) * ones (1, n+1)) .^ (ones (k, 1) * (n:-1:0)); dy = sqrt (1 + sumsq (A/s.R, 2)) * s.normr / sqrt (s.df); dy = reshape (dy, size (x)); catch if (isempty (s)) error ("polyval: third input is required."); elseif (isstruct (s) && all (ismember ({"R", "normr", "df"}, fieldnames (s)))) error (lasterr ()); elseif (isstruct (s)) error ("polyval: third input is missing the required fields."); else error ("polyval: third input is not a structure."); endif end_try_catch endif endfunction %!fail ("polyval ([1,0;0,1],0:10)") %!test %! r = 0:10:50; %! p = poly (r); %! p = p / max (abs (p)); %! x = linspace (0,50,11); %! y = polyval (p,x) + 0.25*sin (100*x); %! [pf, s] = polyfit (x, y, numel (r)); %! [y1, delta] = polyval (pf, x, s); %! expected = [0.37235, 0.35854, 0.32231, 0.32448, 0.31328, ... %! 0.32036, 0.31328, 0.32448, 0.32231, 0.35854, 0.37235]; %! assert (delta, expected, 0.00001); %!test %! x = 10 + (-2:2); %! y = [0, 0, 1, 0, 2]; %! p = polyfit (x, y, numel (x) - 1); %! [pn, s, mu] = polyfit (x, y, numel (x) - 1); %! y1 = polyval (p, x); %! yn = polyval (pn, x, [], mu); %! assert (y1, y, sqrt (eps)); %! assert (yn, y, sqrt (eps)); %!test %! p = [0, 1, 0]; %! x = 1:10; %! assert (x, polyval (p,x), eps); %! x = x(:); %! assert (x, polyval (p,x), eps); %! x = reshape (x, [2, 5]); %! assert (x, polyval (p,x), eps); %! x = reshape (x, [5, 2]); %! assert (x, polyval (p,x), eps); %! x = reshape (x, [1, 1, 5, 2]); %! assert (x, polyval (p,x), eps); %!test %! p = [1]; %! x = 1:10; %! y = ones (size (x)); %! assert (y, polyval (p,x), eps); %! x = x(:); %! y = ones (size (x)); %! assert (y, polyval (p,x), eps); %! x = reshape (x, [2, 5]); %! y = ones (size (x)); %! assert (y, polyval (p,x), eps); %! x = reshape (x, [5, 2]); %! y = ones (size (x)); %! assert (y, polyval (p,x), eps); %! x = reshape (x, [1, 1, 5, 2]); %!assert (zeros (1, 10), polyval ([], 1:10)) %!assert ([], polyval (1, [])) %!assert ([], polyval ([], []))