Mercurial > hg > octave-nkf
view src/ov-flt-complex.cc @ 10784:ca2df6737d6b
generalize cell2mat optimization to n dimensions
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Mon, 12 Jul 2010 21:32:18 +0200 |
parents | 57a59eae83cc |
children | fd0a3ac60b0e |
line wrap: on
line source
/* Copyright (C) 1996, 1997, 1998, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include "lo-ieee.h" #include "lo-specfun.h" #include "lo-mappers.h" #include "oct-obj.h" #include "oct-stream.h" #include "ops.h" #include "ov-complex.h" #include "ov-base.h" #include "ov-base-scalar.h" #include "ov-base-scalar.cc" #include "ov-flt-cx-mat.h" #include "ov-float.h" #include "ov-flt-complex.h" #include "gripes.h" #include "pr-output.h" #include "ops.h" #include "ls-oct-ascii.h" #include "ls-hdf5.h" template class octave_base_scalar<FloatComplex>; DEFINE_OCTAVE_ALLOCATOR (octave_float_complex); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_float_complex, "float complex scalar", "single"); octave_base_value * octave_float_complex::try_narrowing_conversion (void) { octave_base_value *retval = 0; float im = std::imag (scalar); if (im == 0.0) retval = new octave_float_scalar (std::real (scalar)); return retval; } octave_value octave_float_complex::do_index_op (const octave_value_list& idx, bool resize_ok) { // FIXME -- this doesn't solve the problem of // // a = i; a([1,1], [1,1], [1,1]) // // and similar constructions. Hmm... // FIXME -- using this constructor avoids narrowing the // 1x1 matrix back to a scalar value. Need a better solution // to this problem. octave_value tmp (new octave_float_complex_matrix (float_complex_matrix_value ())); return tmp.do_index_op (idx, resize_ok); } double octave_float_complex::double_value (bool force_conversion) const { double retval = lo_ieee_nan_value (); if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex scalar", "real scalar"); retval = std::real (scalar); return retval; } float octave_float_complex::float_value (bool force_conversion) const { float retval = lo_ieee_float_nan_value (); if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex scalar", "real scalar"); retval = std::real (scalar); return retval; } Matrix octave_float_complex::matrix_value (bool force_conversion) const { Matrix retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex scalar", "real matrix"); retval = Matrix (1, 1, std::real (scalar)); return retval; } FloatMatrix octave_float_complex::float_matrix_value (bool force_conversion) const { FloatMatrix retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex scalar", "real matrix"); retval = FloatMatrix (1, 1, std::real (scalar)); return retval; } NDArray octave_float_complex::array_value (bool force_conversion) const { NDArray retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex scalar", "real matrix"); retval = NDArray (dim_vector (1, 1), std::real (scalar)); return retval; } FloatNDArray octave_float_complex::float_array_value (bool force_conversion) const { FloatNDArray retval; if (! force_conversion) gripe_implicit_conversion ("Octave:imag-to-real", "complex scalar", "real matrix"); retval = FloatNDArray (dim_vector (1, 1), std::real (scalar)); return retval; } Complex octave_float_complex::complex_value (bool) const { return scalar; } FloatComplex octave_float_complex::float_complex_value (bool) const { return static_cast<FloatComplex> (scalar); } ComplexMatrix octave_float_complex::complex_matrix_value (bool) const { return ComplexMatrix (1, 1, scalar); } FloatComplexMatrix octave_float_complex::float_complex_matrix_value (bool) const { return FloatComplexMatrix (1, 1, scalar); } ComplexNDArray octave_float_complex::complex_array_value (bool /* force_conversion */) const { return ComplexNDArray (dim_vector (1, 1), scalar); } FloatComplexNDArray octave_float_complex::float_complex_array_value (bool /* force_conversion */) const { return FloatComplexNDArray (dim_vector (1, 1), scalar); } octave_value octave_float_complex::resize (const dim_vector& dv, bool fill) const { if (fill) { FloatComplexNDArray retval (dv, FloatComplexNDArray::resize_fill_value ()); if (dv.numel ()) retval(0) = scalar; return retval; } else { FloatComplexNDArray retval (dv); if (dv.numel ()) retval(0) = scalar; return retval; } } bool octave_float_complex::save_ascii (std::ostream& os) { FloatComplex c = float_complex_value (); octave_write_float_complex (os, c); os << "\n"; return true; } bool octave_float_complex::load_ascii (std::istream& is) { scalar = octave_read_value<FloatComplex> (is); if (!is) { error ("load: failed to load complex scalar constant"); return false; } return true; } bool octave_float_complex::save_binary (std::ostream& os, bool& /* save_as_floats */) { char tmp = static_cast<char> (LS_FLOAT); os.write (reinterpret_cast<char *> (&tmp), 1); FloatComplex ctmp = float_complex_value (); os.write (reinterpret_cast<char *> (&ctmp), 8); return true; } bool octave_float_complex::load_binary (std::istream& is, bool swap, oct_mach_info::float_format fmt) { char tmp; if (! is.read (reinterpret_cast<char *> (&tmp), 1)) return false; FloatComplex ctmp; read_floats (is, reinterpret_cast<float *> (&ctmp), static_cast<save_type> (tmp), 2, swap, fmt); if (error_state || ! is) return false; scalar = ctmp; return true; } #if defined (HAVE_HDF5) bool octave_float_complex::save_hdf5 (hid_t loc_id, const char *name, bool /* save_as_floats */) { hsize_t dimens[3]; hid_t space_hid = -1, type_hid = -1, data_hid = -1; bool retval = true; space_hid = H5Screate_simple (0, dimens, 0); if (space_hid < 0) return false; type_hid = hdf5_make_complex_type (H5T_NATIVE_FLOAT); if (type_hid < 0) { H5Sclose (space_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (loc_id, name, type_hid, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (loc_id, name, type_hid, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Tclose (type_hid); return false; } FloatComplex tmp = float_complex_value (); retval = H5Dwrite (data_hid, type_hid, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); H5Tclose (type_hid); H5Sclose (space_hid); return retval; } bool octave_float_complex::load_hdf5 (hid_t loc_id, const char *name) { bool retval = false; #if HAVE_HDF5_18 hid_t data_hid = H5Dopen (loc_id, name, H5P_DEFAULT); #else hid_t data_hid = H5Dopen (loc_id, name); #endif hid_t type_hid = H5Dget_type (data_hid); hid_t complex_type = hdf5_make_complex_type (H5T_NATIVE_FLOAT); if (! hdf5_types_compatible (type_hid, complex_type)) { H5Tclose (complex_type); H5Dclose (data_hid); return false; } hid_t space_id = H5Dget_space (data_hid); hsize_t rank = H5Sget_simple_extent_ndims (space_id); if (rank != 0) { H5Tclose (complex_type); H5Sclose (space_id); H5Dclose (data_hid); return false; } // complex scalar: FloatComplex ctmp; if (H5Dread (data_hid, complex_type, H5S_ALL, H5S_ALL, H5P_DEFAULT, &ctmp) >= 0) { retval = true; scalar = ctmp; } H5Tclose (complex_type); H5Sclose (space_id); H5Dclose (data_hid); return retval; } #endif mxArray * octave_float_complex::as_mxArray (void) const { mxArray *retval = new mxArray (mxSINGLE_CLASS, 1, 1, mxCOMPLEX); float *pr = static_cast<float *> (retval->get_data ()); float *pi = static_cast<float *> (retval->get_imag_data ()); pr[0] = std::real (scalar); pi[0] = std::imag (scalar); return retval; } octave_value octave_float_complex::map (unary_mapper_t umap) const { switch (umap) { #define SCALAR_MAPPER(UMAP, FCN) \ case umap_ ## UMAP: \ return octave_value (FCN (scalar)) SCALAR_MAPPER (abs, std::abs); SCALAR_MAPPER (acos, ::acos); SCALAR_MAPPER (acosh, ::acosh); SCALAR_MAPPER (angle, std::arg); SCALAR_MAPPER (arg, std::arg); SCALAR_MAPPER (asin, ::asin); SCALAR_MAPPER (asinh, ::asinh); SCALAR_MAPPER (atan, ::atan); SCALAR_MAPPER (atanh, ::atanh); SCALAR_MAPPER (ceil, ::ceil); SCALAR_MAPPER (conj, std::conj); SCALAR_MAPPER (cos, std::cos); SCALAR_MAPPER (cosh, std::cosh); SCALAR_MAPPER (exp, std::exp); SCALAR_MAPPER (expm1, ::expm1); SCALAR_MAPPER (fix, ::fix); SCALAR_MAPPER (floor, ::floor); SCALAR_MAPPER (imag, std::imag); SCALAR_MAPPER (log, std::log); SCALAR_MAPPER (log2, xlog2); SCALAR_MAPPER (log10, std::log10); SCALAR_MAPPER (log1p, ::log1p); SCALAR_MAPPER (real, std::real); SCALAR_MAPPER (round, xround); SCALAR_MAPPER (roundb, xroundb); SCALAR_MAPPER (signum, ::signum); SCALAR_MAPPER (sin, std::sin); SCALAR_MAPPER (sinh, std::sinh); SCALAR_MAPPER (sqrt, std::sqrt); SCALAR_MAPPER (tan, std::tan); SCALAR_MAPPER (tanh, std::tanh); SCALAR_MAPPER (finite, xfinite); SCALAR_MAPPER (isinf, xisinf); SCALAR_MAPPER (isna, octave_is_NA); SCALAR_MAPPER (isnan, xisnan); default: return octave_base_value::map (umap); } }