Mercurial > hg > octave-nkf
view libinterp/corefcn/ordschur.cc @ 20000:ca7599ae464d
doc: Grammarcheck documentation ahead of 4.0 release.
* plot.txi, data.cc, graphics.cc, ordschur.cc, __ilu__.cc, __osmesa_print__.cc,
audiodevinfo.cc, soundsc.m, interp2.m, interp3.m, interpn.m, annotation.m,
zoom.m: Grammarcheck documentation ahead of 4.0 release.
author | Rik <rik@octave.org> |
---|---|
date | Fri, 20 Feb 2015 14:26:36 -0800 |
parents | 56157a7505ed |
children | 19755f4fc851 |
line wrap: on
line source
/* Copyright (C) 2015 Sébastien Villemot <sebastien@debian.org> This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun.h" #include "error.h" #include "oct-obj.h" #include "f77-fcn.h" extern "C" { F77_RET_T F77_FUNC (dtrsen, DTRSEN) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type*, const octave_idx_type&, double*, const octave_idx_type&, double*, const octave_idx_type&, double*, double*, octave_idx_type&, double&, double&, double*, const octave_idx_type&, octave_idx_type*, const octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (ztrsen, ZTRSEN) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type*, const octave_idx_type&, Complex*, const octave_idx_type&, Complex*, const octave_idx_type&, Complex*, octave_idx_type&, double&, double&, Complex*, const octave_idx_type&, octave_idx_type &); F77_RET_T F77_FUNC (strsen, STRSEN) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type*, const octave_idx_type&, float*, const octave_idx_type&, float*, const octave_idx_type&, float*, float*, octave_idx_type&, float&, float&, float*, const octave_idx_type&, octave_idx_type*, const octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (ctrsen, CTRSEN) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type*, const octave_idx_type&, FloatComplex*, const octave_idx_type&, FloatComplex*, const octave_idx_type&, FloatComplex*, octave_idx_type&, float&, float&, FloatComplex*, const octave_idx_type&, octave_idx_type &); } DEFUN (ordschur, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{UR}, @var{SR}] =} ordschur (@var{U}, @var{S}, @var{select})\n\ Reorders the real Schur factorization (@var{U},@var{S}) obtained with the\n\ @code{schur} function, so that selected eigenvalues appear in the upper left\n\ diagonal blocks of the quasi triangular Schur matrix.\n\ The logical vector @var{select} specifies the selected eigenvalues as they\n\ appear along @var{S}'s diagonal.\n\ \n\ For example, given the matrix @code{@var{A} = [1, 2; 3, 4]}, and its Schur\n\ decomposition\n\ \n\ @example\n\ [@var{U}, @var{S}] = schur (@var{A})\n\ @end example\n\ \n\ @noindent\n\ which returns\n\ \n\ @example\n\ @group\n\ @var{U} =\n\ \n\ -0.82456 -0.56577\n\ 0.56577 -0.82456\n\ \n\ @var{S} =\n\ \n\ -0.37228 -1.00000\n\ 0.00000 5.37228\n\ \n\ @end group\n\ @end example\n\ \n\ It is possible to reorder the decomposition so that the positive eigenvalue\n\ is in the upper left corner, by doing:\n\ \n\ @example\n\ [@var{U}, @var{S}] = ordschur (@var{U}, @var{S}, [0,1])\n\ @end example\n\ \n\ @seealso{schur}\n\ @end deftypefn") { const octave_idx_type nargin = args.length (); octave_value_list retval; if (nargin != 3) { print_usage (); return retval; } const Array<octave_idx_type> sel = args(2).octave_idx_type_vector_value (); if (error_state) { error ("ordschur: SELECT must be an array of integers"); return retval; } const octave_idx_type n = sel.numel (); const dim_vector dimU = args(0).dims (); const dim_vector dimS = args(1).dims (); if (n != dimU(0)) { error ("ordschur: SELECT must have same length as the sides of U and S"); return retval; } else if (n != dimU(0) || n != dimS(0) || n != dimU(1) || n != dimS(1)) { error ("ordschur: U and S must be square and of equal sizes"); return retval; } const bool double_type = args(0).is_double_type () || args(1).is_double_type (); const bool complex_type = args(0).is_complex_type () || args(1).is_complex_type (); #define PREPARE_ARGS(TYPE, TYPE_M, TYPE_COND) \ TYPE ## Matrix U = args(0).TYPE_M ## _value (); \ TYPE ## Matrix S = args(1).TYPE_M ## _value (); \ if (error_state) \ { \ error ("ordschur: U and S must be real or complex floating point matrices"); \ return retval; \ } \ TYPE ## Matrix w (dim_vector (n, 1)); \ TYPE ## Matrix work (dim_vector (n, 1)); \ octave_idx_type m; \ octave_idx_type info; \ TYPE_COND cond1, cond2; #define PREPARE_OUTPUT()\ if (info != 0) \ { \ error ("ordschur: trsen failed"); \ return retval; \ } \ retval(0) = U; \ retval(1) = S; \ if (double_type) { if (complex_type) { PREPARE_ARGS (Complex, complex_matrix, double) F77_XFCN (ztrsen, ztrsen, (F77_CONST_CHAR_ARG ("N"), F77_CONST_CHAR_ARG ("V"), sel.data (), n, S.fortran_vec (), n, U.fortran_vec (), n, w.fortran_vec (), m, cond1, cond2, work.fortran_vec (), n, info)); PREPARE_OUTPUT() } else { PREPARE_ARGS (, matrix, double) Matrix wi (dim_vector (n, 1)); Array<octave_idx_type> iwork (dim_vector (n, 1)); F77_XFCN (dtrsen, dtrsen, (F77_CONST_CHAR_ARG ("N"), F77_CONST_CHAR_ARG ("V"), sel.data (), n, S.fortran_vec (), n, U.fortran_vec (), n, w.fortran_vec (), wi.fortran_vec (), m, cond1, cond2, work.fortran_vec (), n, iwork.fortran_vec (), n, info)); PREPARE_OUTPUT () } } else { if (complex_type) { PREPARE_ARGS (FloatComplex, float_complex_matrix, float) F77_XFCN (ctrsen, ctrsen, (F77_CONST_CHAR_ARG ("N"), F77_CONST_CHAR_ARG ("V"), sel.data (), n, S.fortran_vec (), n, U.fortran_vec (), n, w.fortran_vec (), m, cond1, cond2, work.fortran_vec (), n, info)); PREPARE_OUTPUT () } else { PREPARE_ARGS (Float, float_matrix, float) FloatMatrix wi (dim_vector (n, 1)); Array<octave_idx_type> iwork (dim_vector (n, 1)); F77_XFCN (strsen, strsen, (F77_CONST_CHAR_ARG ("N"), F77_CONST_CHAR_ARG ("V"), sel.data (), n, S.fortran_vec (), n, U.fortran_vec (), n, w.fortran_vec (), wi.fortran_vec (), m, cond1, cond2, work.fortran_vec (), n, iwork.fortran_vec (), n, info)); PREPARE_OUTPUT () } } #undef PREPARE_ARGS #undef PREPARE_OUTPUT return retval; } /* %!test %! A = [1, 2, 3, -2; 4, 5, 6, -5 ; 7, 8, 9, -5; 10, 11, 12, 4 ]; %! [U, T] = schur (A); %! [US, TS] = ordschur (U, T, [ 0, 0, 1, 1 ]); %! assert (US*TS*US', A, sqrt (eps)) %! assert (diag (T)(3:4), diag (TS)(1:2), sqrt (eps)) %!test %! A = [1, 2, 3, -2; 4, 5, 6, -5 ; 7, 8, 9, -5; 10, 11, 12, 4 ]; %! [U, T] = schur (A); %! [US, TS] = ordschur (single (U), single (T), [ 0, 0, 1, 1 ]); %! assert (US*TS*US', A, sqrt (eps ("single"))) %! assert (diag (T)(3:4), diag (TS)(1:2), sqrt (eps ("single"))) %!test %! A = [1, 2, 3, -2; 4, 5, 6, -5 ; 7, 8, 9, -5; 10, 11, 12, 4+3i ]; %! [U, T] = schur (A); %! [US, TS] = ordschur (U, T, [ 0, 0, 1, 1 ]); %! assert (US*TS*US', A, sqrt (eps)) %! assert (diag (T)(3:4), diag (TS)(1:2), sqrt (eps)) %!test %! A = [1, 2, 3, -2; 4, 5, 6, -5 ; 7, 8, 9, -5; 10, 11, 12, 4+3i ]; %! [U, T] = schur (A); %! [US, TS] = ordschur (single (U), single (T), [ 0, 0, 1, 1 ]); %! assert (US*TS*US', A, sqrt (eps ("single"))) %! assert (diag (T)(3:4), diag (TS)(1:2), sqrt (eps ("single"))) */