Mercurial > hg > octave-nkf
view libinterp/corefcn/rcond.cc @ 19527:cd2a75e5cd6e gui-release
use indentation width for the editor from the settings (bug #43592)
* file-editor-tab.cc (notice-settings): Read the indentation width from the
settings file
author | Torsten <ttl@justmail.de> |
---|---|
date | Thu, 13 Nov 2014 07:02:33 +0100 |
parents | 175b392e91fe |
children | 4197fc428c7d |
line wrap: on
line source
/* Copyright (C) 2008-2013 David Bateman This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN (rcond, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {@var{c} =} rcond (@var{A})\n\ Compute the 1-norm estimate of the reciprocal condition number as returned\n\ by @sc{lapack}. If the matrix is well-conditioned then @var{c} will be near\n\ 1 and if the matrix is poorly conditioned it will be close to zero.\n\ \n\ The matrix @var{A} must not be sparse. If the matrix is sparse then\n\ @code{condest (@var{A})} or @code{rcond (full (@var{A}))} should be used\n\ instead.\n\ @seealso{cond, condest}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin != 1) print_usage (); else if (args(0).is_sparse_type ()) error ("rcond: for sparse matrices use 'rcond (full (a))' or 'condest (a)' instead"); else if (args(0).is_single_type ()) { if (args(0).is_complex_type ()) { FloatComplexMatrix m = args(0).float_complex_matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } else { FloatMatrix m = args(0).float_matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } } else if (args(0).is_complex_type ()) { ComplexMatrix m = args(0).complex_matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } else { Matrix m = args(0).matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } return retval; } /* %!assert (rcond (eye (2)), 1) %!assert (rcond (ones (2)), 0) %!assert (rcond ([1 1; 2 1]), 1/9) %!assert (rcond (magic (4)), 0, eps) %!shared x, sx %! x = [-5.25, -2.25; -2.25, 1] * eps () + ones (2) / 2; %! sx = [-5.25, -2.25; -2.25, 1] * eps ("single") + ones (2) / 2; %!assert (rcond (x) < eps ()); %!assert (rcond (sx) < eps ('single')); %!assert (rcond (x*i) < eps ()); %!assert (rcond (sx*i) < eps ('single')); */