Mercurial > hg > octave-nkf
view scripts/polynomial/ppint.m @ 14570:d07d96e53612 stable
seconds after the minute can be 0-60, not 0-61
* system.txi (Timing Utilities): Correct possible values for number of
seconds in time structures. From Rafael Arndt <rafaelarndt@gmail.com>.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Tue, 17 Apr 2012 14:42:49 -0400 |
parents | 72c96de7a403 |
children | f3d52523cde1 |
line wrap: on
line source
## Copyright (C) 2008-2012 VZLU Prague, a.s., Czech Republic ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this software; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{ppi} =} ppint (@var{pp}) ## @deftypefnx {Function File} {@var{ppi} =} ppint (@var{pp}, @var{c}) ## Compute the integral of the piecewise polynomial struct @var{pp}. ## @var{c}, if given, is the constant of integration. ## @seealso{mkpp, ppval, ppder} ## @end deftypefn function ppi = ppint (pp, c) if (nargin < 1 || nargin > 2) print_usage (); endif if (! (isstruct (pp) && strcmp (pp.form, "pp"))) error ("ppint: PP must be a structure"); endif [x, p, n, k, d] = unmkpp (pp); p = reshape (p, [], k); ## Get piecewise antiderivatives pi = p / diag (k:-1:1); k += 1; if (nargin == 1) pi(:, k) = 0; else pi(:, k) = repmat (c(:), n, 1); endif ppi = mkpp (x, pi, d); tmp = -cumsum (ppjumps (ppi), length (d) + 1); ppi.coefs(prod(d)+1:end, k) = tmp(:); endfunction %!shared x,y,pp,ppi %! x=0:8;y=[ones(size(x));x+1];pp=spline(x,y); %! ppi=ppint(pp); %!assert(ppval(ppi,x),[x;0.5*x.^2+x],1e-14) %!assert(ppi.order,5)