Mercurial > hg > octave-nkf
view scripts/geometry/tsearchn.m @ 12575:d0b799dafede
Grammarcheck files for 3.4.1 release.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Mon, 04 Apr 2011 15:33:46 -0700 |
parents | c792872f8942 |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 2007-2011 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{idx}, @var{p}] =} tsearchn (@var{x}, @var{t}, @var{xi}) ## Search for the enclosing Delaunay convex hull. For @code{@var{t} = ## delaunayn (@var{x})}, finds the index in @var{t} containing the ## points @var{xi}. For points outside the convex hull, @var{idx} is NaN. ## If requested @code{tsearchn} also returns the Barycentric coordinates @var{p} ## of the enclosing triangles. ## @seealso{delaunay, delaunayn} ## @end deftypefn function [idx, p] = tsearchn (x, t, xi) if (nargin != 3) print_usage (); endif nt = size (t, 1); [m, n] = size (x); mi = size (xi, 1); idx = NaN (mi, 1); p = NaN (mi, n + 1); ni = [1:mi].'; for i = 1 : nt ## Only calculate the Barycentric coordinates for points that have not ## already been found in a triangle. b = cart2bary (x (t (i, :), :), xi(ni,:)); ## Our points xi are in the current triangle if ## (all(b >= 0) && all (b <= 1)). However as we impose that ## sum(b,2) == 1 we only need to test all(b>=0). Note need to add ## a small margin for rounding errors intri = all (b >= -1e-12, 2); idx(ni(intri)) = i; p(ni(intri),:) = b(intri, :); ni(intri) = []; endfor endfunction function Beta = cart2bary (T, P) ## Conversion of Cartesian to Barycentric coordinates. ## Given a reference simplex in N dimensions represented by a ## (N+1)-by-(N) matrix, and arbitrary point P in cartesion coordinates, ## represented by a N-by-1 row vector can be written as ## ## P = Beta * T ## ## Where Beta is a N+1 vector of the barycentric coordinates. A criteria ## on Beta is that ## ## sum (Beta) == 1 ## ## and therefore we can write the above as ## ## P - T(end, :) = Beta(1:end-1) * (T(1:end-1,:) - ones(N,1) * T(end,:)) ## ## and then we can solve for Beta as ## ## Beta(1:end-1) = (P - T(end,:)) / (T(1:end-1,:) - ones(N,1) * T(end,:)) ## Beta(end) = sum(Beta) ## ## Note below is generalize for multiple values of P, one per row. [M, N] = size (P); Beta = (P - ones (M,1) * T(end,:)) / (T(1:end-1,:) - ones(N,1) * T(end,:)); Beta (:,end+1) = 1 - sum(Beta, 2); endfunction %!shared x, tri %! x = [-1,-1;-1,1;1,-1]; %! tri = [1, 2, 3]; %!test %! [idx, p] = tsearchn (x,tri,[-1,-1]); %! assert (idx, 1) %! assert (p, [1,0,0], 1e-12) %!test %! [idx, p] = tsearchn (x,tri,[-1,1]); %! assert (idx, 1) %! assert (p, [0,1,0], 1e-12) %!test %! [idx, p] = tsearchn (x,tri,[1,-1]); %! assert (idx, 1) %! assert (p, [0,0,1], 1e-12) %!test %! [idx, p] = tsearchn (x,tri,[-1/3,-1/3]); %! assert (idx, 1) %! assert (p, [1/3,1/3,1/3], 1e-12) %!test %! [idx, p] = tsearchn (x,tri,[1,1]); %! assert (idx, NaN) %! assert (p, [NaN, NaN, NaN])