Mercurial > hg > octave-nkf
view scripts/statistics/base/iqr.m @ 20279:db30302bedc3
Added tag rc-4-0-0-3 for changeset 065f933ef083
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 10 Apr 2015 14:41:21 -0400 |
parents | 9fc020886ae9 |
children | d9341b422488 |
line wrap: on
line source
## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} iqr (@var{x}) ## @deftypefnx {Function File} {} iqr (@var{x}, @var{dim}) ## Return the interquartile range, i.e., the difference between the upper ## and lower quartile of the input data. If @var{x} is a matrix, do the ## above for first non-singleton dimension of @var{x}. ## ## If the optional argument @var{dim} is given, operate along this dimension. ## ## As a measure of dispersion, the interquartile range is less affected by ## outliers than either @code{range} or @code{std}. ## @seealso{range, std} ## @end deftypefn ## Author KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Interquartile range function y = iqr (x, dim) if (nargin != 1 && nargin != 2) print_usage (); endif if (! (isnumeric (x) || islogical (x))) error ("iqr: X must be a numeric vector or matrix"); endif nd = ndims (x); sz = size (x); nel = numel (x); if (nargin != 2) ## Find the first non-singleton dimension. (dim = find (sz > 1, 1)) || (dim = 1); else if (!(isscalar (dim) && dim == fix (dim)) || !(1 <= dim && dim <= nd)) error ("iqr: DIM must be an integer and a valid dimension"); endif endif ## This code is a bit heavy, but is needed until empirical_inv ## can take a matrix, rather than just a vector argument. n = sz(dim); sz(dim) = 1; if (isa (x, "single")) y = zeros (sz, "single"); else y = zeros (sz); endif stride = prod (sz(1:dim-1)); for i = 1 : nel / n; offset = i; offset2 = 0; while (offset > stride) offset -= stride; offset2++; endwhile offset += offset2 * stride * n; rng = [0 : n-1] * stride + offset; y(i) = diff (empirical_inv ([1/4, 3/4], x(rng))); endfor endfunction %!assert (iqr (1:101), 50) %!assert (iqr (single (1:101)), single (50)) ## FIXME: iqr throws horrible error when running across a dimension that is 1. %!test %! x = [1:100]'; %! assert (iqr (x, 1), 50); %! assert (iqr (x', 2), 50); %!error iqr () %!error iqr (1, 2, 3) %!error iqr (1) %!error iqr (['A'; 'B']) %!error iqr (1:10, 3)