Mercurial > hg > octave-nkf
view scripts/statistics/base/lscov.m @ 20279:db30302bedc3
Added tag rc-4-0-0-3 for changeset 065f933ef083
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 10 Apr 2015 14:41:21 -0400 |
parents | 9fc020886ae9 |
children | d9341b422488 |
line wrap: on
line source
## Copyright (C) 2014-2015 Nir Krakauer ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} =} lscov (@var{A}, @var{b}) ## @deftypefnx {Function File} {@var{x} =} lscov (@var{A}, @var{b}, @var{V}) ## @deftypefnx {Function File} {@var{x} =} lscov (@var{A}, @var{b}, @var{V}, @var{alg}) ## @deftypefnx {Function File} {[@var{x}, @var{stdx}, @var{mse}, @var{S}] =} lscov (@dots{}) ## ## Compute a generalized linear least squares fit. ## Estimate @var{x} under the model @var{b} = @var{A}@var{x} + @var{w}, ## where the noise @var{w} is assumed to follow a normal distribution ## with covariance matrix @math{{\sigma^2} V}. ## ## If the size of the coefficient matrix @var{A} is n-by-p, the ## size of the vector/array of constant terms @var{b} must be n-by-k. ## ## The optional input argument @var{V} may be a n-by-1 vector of positive ## weights (inverse variances), or a n-by-n symmetric positive ## semidefinite matrix representing the covariance of @var{b}. If ## @var{V} is not supplied, the ordinary least squares solution is ## returned. ## ## The @var{alg} input argument, a guidance on solution method to use, ## is currently ignored. ## ## Besides the least-squares estimate matrix @var{x} (p-by-k), the ## function also returns @var{stdx} (p-by-k), the error standard ## deviation of estimated @var{x}; @var{mse} (k-by-1), the estimated ## data error covariance scale factors (@math{\sigma^2}); and @var{S} ## (p-by-p, or p-by-p-by-k if k > 1), the error covariance of @var{x}. ## ## Reference: @nospell{Golub and Van Loan} (1996), ## Matrix Computations (3rd Ed.), Johns Hopkins, Section 5.6.3 ## ## @end deftypefn ## @seealso{ols, gls, lsqnonneg} ## Author: Nir Krakauer function [x, stdx, mse, S] = lscov (A, b, V = [], alg) if (nargin < 2 || (rows (A) != rows (b))) print_usage (); endif n = rows (A); p = columns (A); k = columns (b); if (! isempty (V)) if (rows (V) != n || ! any (columns (V) == [1 n])) error ("lscov: V should be a square matrix or a vector with the same number of rows as A"); endif if (isvector (V)) ## n-by-1 vector of inverse variances v = diag (sqrt (V)); A = v * A; b = v * b; else ## n-by-n covariance matrix try ## ordinarily V will be positive definite B = chol (V)'; catch ## if V is only positive semidefinite, use its ## eigendecomposition to find a factor B such that V = B*B' [B, lambda] = eig (V); image_dims = (diag (lambda) > 0); B = B(:, image_dims) * sqrt (lambda(image_dims, image_dims)); end_try_catch A = B \ A; b = B \ b; endif endif pinv_A = pinv (A); #pseudoinverse x = pinv_A * b; if (isargout (3)) dof = n - p; #degrees of freedom remaining after fit SSE = sumsq (b - A * x); mse = SSE / dof; endif s = pinv_A * pinv_A'; stdx = sqrt (diag (s) * mse); if (isargout (4)) if (k == 1) S = mse * s; else S = nan (p, p, k); for i = 1:k S(:, :, i) = mse(i) * s; endfor endif endif endfunction %!test %! ## Longley data from the NIST Statistical Reference Dataset %! Z = [ 60323 83.0 234289 2356 1590 107608 1947 %! 61122 88.5 259426 2325 1456 108632 1948 %! 60171 88.2 258054 3682 1616 109773 1949 %! 61187 89.5 284599 3351 1650 110929 1950 %! 63221 96.2 328975 2099 3099 112075 1951 %! 63639 98.1 346999 1932 3594 113270 1952 %! 64989 99.0 365385 1870 3547 115094 1953 %! 63761 100.0 363112 3578 3350 116219 1954 %! 66019 101.2 397469 2904 3048 117388 1955 %! 67857 104.6 419180 2822 2857 118734 1956 %! 68169 108.4 442769 2936 2798 120445 1957 %! 66513 110.8 444546 4681 2637 121950 1958 %! 68655 112.6 482704 3813 2552 123366 1959 %! 69564 114.2 502601 3931 2514 125368 1960 %! 69331 115.7 518173 4806 2572 127852 1961 %! 70551 116.9 554894 4007 2827 130081 1962 ]; %! ## Results certified by NIST using 500 digit arithmetic %! ## b and standard error in b %! V = [ -3482258.63459582 890420.383607373 %! 15.0618722713733 84.9149257747669 %! -0.358191792925910E-01 0.334910077722432E-01 %! -2.02022980381683 0.488399681651699 %! -1.03322686717359 0.214274163161675 %! -0.511041056535807E-01 0.226073200069370 %! 1829.15146461355 455.478499142212 ]; %! rsd = 304.854073561965; %! y = Z(:,1); X = [ones(rows(Z),1), Z(:,2:end)]; %! alpha = 0.05; %! [b, stdb, mse] = lscov (X, y); %! assert(b, V(:,1), 3e-6); %! assert(stdb, V(:,2), -1.e-5); %! assert(sqrt (mse), rsd, -1E-6); %!test %! ## Adapted from example in Matlab documentation %! x1 = [.2 .5 .6 .8 1.0 1.1]'; %! x2 = [.1 .3 .4 .9 1.1 1.4]'; %! X = [ones(size(x1)) x1 x2]; %! y = [.17 .26 .28 .23 .27 .34]'; %! [b, se_b, mse, S] = lscov(X, y); %! assert(b, [0.1203 0.3284 -0.1312]', 1E-4); %! assert(se_b, [0.0643 0.2267 0.1488]', 1E-4); %! assert(mse, 0.0015, 1E-4); %! assert(S, [0.0041 -0.0130 0.0075; -0.0130 0.0514 -0.0328; 0.0075 -0.0328 0.0221], 1E-4); %! w = [1 1 1 1 1 .1]'; %! [bw, sew_b, msew] = lscov (X, y, w); %! assert(bw, [0.1046 0.4614 -0.2621]', 1E-4); %! assert(sew_b, [0.0309 0.1152 0.0814]', 1E-4); %! assert(msew, 3.4741e-004, -1E-4); %! V = .2*ones(length(x1)) + .8*diag(ones(size(x1))); %! [bg, sew_b, mseg] = lscov (X, y, V); %! assert(bg, [0.1203 0.3284 -0.1312]', 1E-4); %! assert(sew_b, [0.0672 0.2267 0.1488]', 1E-4); %! assert(mseg, 0.0019, 1E-4); %! y2 = [y 2*y]; %! [b2, se_b2, mse2, S2] = lscov (X, y2); %! assert(b2, [b 2*b], eps) %! assert(se_b2, [se_b 2*se_b], eps) %! assert(mse2, [mse 4*mse], eps) %! assert(S2(:, :, 1), S, eps) %! assert(S2(:, :, 2), 4*S, eps) %!test %! ## Artificial example with positive semidefinite weight matrix %! x = (0:0.2:2)'; %! y = round(100*sin(x) + 200*cos(x)); %! X = [ones(size(x)) sin(x) cos(x)]; %! V = eye(numel(x)); %! V(end, end-1) = V(end-1, end) = 1; %! [b, seb, mseb, S] = lscov (X, y, V); %! assert(b, [0 100 200]', 0.2);