Mercurial > hg > octave-nkf
view src/data.cc @ 1277:db4f4009d6e8
[project @ 1995-04-24 20:35:06 by jwe]
author | jwe |
---|---|
date | Mon, 24 Apr 1995 20:35:06 +0000 |
parents | 0ffb52e268d7 |
children | 611d403c7f3d |
line wrap: on
line source
// data.cc -*- C++ -*- /* Copyright (C) 1992, 1993, 1994, 1995 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* The function builtin_pwd adapted from a similar function from GNU Bash, the Bourne Again SHell, copyright (C) 1987, 1989, 1991 Free Software Foundation, Inc. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "tree-const.h" #include "user-prefs.h" #include "oct-map.h" #include "help.h" #include "utils.h" #include "error.h" #include "gripes.h" #include "defun.h" #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif #ifndef ABS #define ABS(x) (((x) < 0) ? (-x) : (x)) #endif DEFUN ("all", Fall, Sall, 1, 1, "all (X): are all elements of X nonzero?") { Octave_object retval; int nargin = args.length (); if (nargin == 1 && args(0).is_defined ()) retval = args(0).all (); else print_usage ("all"); return retval; } DEFUN ("any", Fany, Sany, 1, 1, "any (X): are any elements of X nonzero?") { Octave_object retval; int nargin = args.length (); if (nargin == 1 && args(0).is_defined ()) retval = args(0).any (); else print_usage ("any"); return retval; } // These mapping functions may also be useful in other places, eh? typedef double (*d_dd_fcn) (double, double); static Matrix map (d_dd_fcn f, double x, const Matrix& y) { int nr = y.rows (); int nc = y.columns (); Matrix retval (nr, nc); for (int j = 0; j < nc; j++) for (int i = 0; i < nr; i++) retval.elem (i, j) = f (x, y.elem (i, j)); return retval; } static Matrix map (d_dd_fcn f, const Matrix& x, double y) { int nr = x.rows (); int nc = x.columns (); Matrix retval (nr, nc); for (int j = 0; j < nc; j++) for (int i = 0; i < nr; i++) retval.elem (i, j) = f (x.elem (i, j), y); return retval; } static Matrix map (d_dd_fcn f, const Matrix& x, const Matrix& y) { int x_nr = x.rows (); int x_nc = x.columns (); int y_nr = y.rows (); int y_nc = y.columns (); assert (x_nr == y_nr && x_nc == y_nc); Matrix retval (x_nr, x_nc); for (int j = 0; j < x_nc; j++) for (int i = 0; i < x_nr; i++) retval.elem (i, j) = f (x.elem (i, j), y.elem (i, j)); return retval; } DEFUN ("atan2", Fatan2, Satan2, 2, 1, "atan2 (Y, X): atan (Y / X) in range -pi to pi") { Octave_object retval; int nargin = args.length (); if (nargin == 2 && args(0).is_defined () && args(1).is_defined ()) { tree_constant arg_y = args(0); tree_constant arg_x = args(1); int y_nr = arg_y.rows (); int y_nc = arg_y.columns (); int x_nr = arg_x.rows (); int x_nc = arg_x.columns (); int arg_y_empty = empty_arg ("atan2", y_nr, y_nc); int arg_x_empty = empty_arg ("atan2", x_nr, x_nc); if (arg_y_empty > 0 && arg_x_empty > 0) return Matrix (); else if (arg_y_empty || arg_x_empty) return retval; int y_is_scalar = (y_nr == 1 && y_nc == 1); int x_is_scalar = (x_nr == 1 && x_nc == 1); if (y_is_scalar && x_is_scalar) { double y = arg_y.double_value (); if (! error_state) { double x = arg_x.double_value (); if (! error_state) retval = atan2 (y, x); } } else if (y_is_scalar) { double y = arg_y.double_value (); if (! error_state) { Matrix x = arg_x.matrix_value (); if (! error_state) retval = map (atan2, y, x); } } else if (x_is_scalar) { Matrix y = arg_y.matrix_value (); if (! error_state) { double x = arg_x.double_value (); if (! error_state) retval = map (atan2, y, x); } } else if (y_nr == x_nr && y_nc == x_nc) { Matrix y = arg_y.matrix_value (); if (! error_state) { Matrix x = arg_x.matrix_value (); if (! error_state) retval = map (atan2, y, x); } } else error ("atan2: nonconformant matrices"); } else print_usage ("atan2"); return retval; } DEFUN ("cumprod", Fcumprod, Scumprod, 1, 1, "cumprod (X): cumulative products") { Octave_object retval; int nargin = args.length (); if (nargin == 1) { tree_constant arg = args(0); if (arg.is_real_type ()) { Matrix tmp = arg.matrix_value (); if (! error_state) retval(0) = tmp.cumprod (); } else if (arg.is_complex_type ()) { ComplexMatrix tmp = arg.complex_matrix_value (); if (! error_state) retval(0) = tmp.cumprod (); } else { gripe_wrong_type_arg ("cumprod", arg); return retval; } } else print_usage ("cumprod"); return retval; } DEFUN ("cumsum", Fcumsum, Scumsum, 1, 1, "cumsum (X): cumulative sums") { Octave_object retval; int nargin = args.length (); if (nargin == 1) { tree_constant arg = args(0); if (arg.is_real_type ()) { Matrix tmp = arg.matrix_value (); if (! error_state) retval(0) = tmp.cumsum (); } else if (arg.is_complex_type ()) { ComplexMatrix tmp = arg.complex_matrix_value (); if (! error_state) retval(0) = tmp.cumsum (); } else { gripe_wrong_type_arg ("cumsum", arg); return retval; } } else print_usage ("cumsum"); return retval; } static tree_constant make_diag (const Matrix& v, int k) { int nr = v.rows (); int nc = v.columns (); assert (nc == 1 || nr == 1); tree_constant retval; int roff = 0; int coff = 0; if (k > 0) { roff = 0; coff = k; } else if (k < 0) { roff = -k; coff = 0; } if (nr == 1) { int n = nc + ABS (k); Matrix m (n, n, 0.0); for (int i = 0; i < nc; i++) m.elem (i+roff, i+coff) = v.elem (0, i); retval = tree_constant (m); } else { int n = nr + ABS (k); Matrix m (n, n, 0.0); for (int i = 0; i < nr; i++) m.elem (i+roff, i+coff) = v.elem (i, 0); retval = tree_constant (m); } return retval; } static tree_constant make_diag (const ComplexMatrix& v, int k) { int nr = v.rows (); int nc = v.columns (); assert (nc == 1 || nr == 1); tree_constant retval; int roff = 0; int coff = 0; if (k > 0) { roff = 0; coff = k; } else if (k < 0) { roff = -k; coff = 0; } if (nr == 1) { int n = nc + ABS (k); ComplexMatrix m (n, n, 0.0); for (int i = 0; i < nc; i++) m.elem (i+roff, i+coff) = v.elem (0, i); retval = tree_constant (m); } else { int n = nr + ABS (k); ComplexMatrix m (n, n, 0.0); for (int i = 0; i < nr; i++) m.elem (i+roff, i+coff) = v.elem (i, 0); retval = tree_constant (m); } return retval; } static tree_constant make_diag (const tree_constant& arg) { tree_constant retval; if (arg.is_real_type ()) { Matrix m = arg.matrix_value (); if (! error_state) { int nr = m.rows (); int nc = m.columns (); if (nr == 0 || nc == 0) retval = Matrix (); else if (nr == 1 || nc == 1) retval = make_diag (m, 0); else { ColumnVector v = m.diag (); if (v.capacity () > 0) retval = v; } } else gripe_wrong_type_arg ("diag", arg); } else if (arg.is_complex_type ()) { ComplexMatrix cm = arg.complex_matrix_value (); if (! error_state) { int nr = cm.rows (); int nc = cm.columns (); if (nr == 0 || nc == 0) retval = Matrix (); else if (nr == 1 || nc == 1) retval = make_diag (cm, 0); else { ComplexColumnVector v = cm.diag (); if (v.capacity () > 0) retval = v; } } else gripe_wrong_type_arg ("diag", arg); } else gripe_wrong_type_arg ("diag", arg); return retval; } static tree_constant make_diag (const tree_constant& a, const tree_constant& b) { tree_constant retval; double tmp = b.double_value (); if (error_state) { error ("diag: invalid second argument"); return retval; } int k = NINT (tmp); int n = ABS (k) + 1; if (a.is_real_type ()) { if (a.is_scalar_type ()) { double d = a.double_value (); if (k == 0) retval = d; else if (k > 0) { Matrix m (n, n, 0.0); m.elem (0, k) = d; retval = m; } else if (k < 0) { Matrix m (n, n, 0.0); m.elem (-k, 0) = d; retval = m; } } else if (a.is_matrix_type ()) { Matrix m = a.matrix_value (); int nr = m.rows (); int nc = m.columns (); if (nr == 0 || nc == 0) retval = Matrix (); else if (nr == 1 || nc == 1) retval = make_diag (m, k); else { ColumnVector d = m.diag (k); retval = d; } } else gripe_wrong_type_arg ("diag", a); } else if (a.is_complex_type ()) { if (a.is_scalar_type ()) { Complex c = a.complex_value (); if (k == 0) retval = c; else if (k > 0) { ComplexMatrix m (n, n, 0.0); m.elem (0, k) = c; retval = m; } else if (k < 0) { ComplexMatrix m (n, n, 0.0); m.elem (-k, 0) = c; retval = m; } } else if (a.is_matrix_type ()) { ComplexMatrix cm = a.complex_matrix_value (); int nr = cm.rows (); int nc = cm.columns (); if (nr == 0 || nc == 0) retval = Matrix (); else if (nr == 1 || nc == 1) retval = make_diag (cm, k); else { ComplexColumnVector d = cm.diag (k); retval = d; } } else gripe_wrong_type_arg ("diag", a); } else gripe_wrong_type_arg ("diag", a); return retval; } DEFUN ("diag", Fdiag, Sdiag, 2, 1, "diag (X [,k]): form/extract diagonals") { Octave_object retval; int nargin = args.length (); if (nargin == 1 && args(0).is_defined ()) retval = make_diag (args(0)); else if (nargin == 2 && args(0).is_defined () && args(1).is_defined ()) retval = make_diag (args(0), args(1)); else print_usage ("diag"); return retval; } DEFUN ("prod", Fprod, Sprod, 1, 1, "prod (X): products") { Octave_object retval; int nargin = args.length (); if (nargin == 1) { tree_constant arg = args(0); if (arg.is_real_type ()) { Matrix tmp = arg.matrix_value (); if (! error_state) retval(0) = tmp.prod (); } else if (arg.is_complex_type ()) { ComplexMatrix tmp = arg.complex_matrix_value (); if (! error_state) retval(0) = tmp.prod (); } else { gripe_wrong_type_arg ("prod", arg); return retval; } } else print_usage ("prod"); return retval; } DEFUN ("size", Fsize, Ssize, 2, 1, "[m, n] = size (x): return rows and columns of X\n\ \n\ d = size (x): return number of rows and columns of x as a row vector\n\ \n\ m = size (x, 1): return number of rows in x\n\ m = size (x, 2): return number of columns in x") { Octave_object retval; int nargin = args.length (); if (nargin == 1 && nargout < 3) { int nr = args(0).rows (); int nc = args(0).columns (); if (nargout == 0 || nargout == 1) { Matrix m (1, 2); m.elem (0, 0) = nr; m.elem (0, 1) = nc; retval = m; } else if (nargout == 2) { retval(1) = (double) nc; retval(0) = (double) nr; } } else if (nargin == 2 && nargout < 2) { int nd = NINT (args(1).double_value ()); if (error_state) error ("size: expecting scalar as second argument"); else { if (nd == 1) retval(0) = (double) (args(0).rows ()); else if (nd == 2) retval(0) = (double) (args(0).columns ()); else error ("size: invalid second argument -- expecting 1 or 2"); } } else print_usage ("size"); return retval; } DEFUN ("sum", Fsum, Ssum, 1, 1, "sum (X): sum of elements") { Octave_object retval; int nargin = args.length (); if (nargin == 1) { tree_constant arg = args(0); if (arg.is_real_type ()) { Matrix tmp = arg.matrix_value (); if (! error_state) retval(0) = tmp.sum (); } else if (arg.is_complex_type ()) { ComplexMatrix tmp = arg.complex_matrix_value (); if (! error_state) retval(0) = tmp.sum (); } else { gripe_wrong_type_arg ("sum", arg); return retval; } } else print_usage ("sum"); return retval; } DEFUN ("sumsq", Fsumsq, Ssumsq, 1, 1, "sumsq (X): sum of squares of elements") { Octave_object retval; int nargin = args.length (); if (nargin == 1) { tree_constant arg = args(0); if (arg.is_real_type ()) { Matrix tmp = arg.matrix_value (); if (! error_state) retval(0) = tmp.sumsq (); } else if (arg.is_complex_type ()) { ComplexMatrix tmp = arg.complex_matrix_value (); if (! error_state) retval(0) = tmp.sumsq (); } else { gripe_wrong_type_arg ("sumsq", arg); return retval; } } else print_usage ("sumsq"); return retval; } DEFUN ("is_struct", Fis_struct, Sis_struct, 1, 1, "is_struct (x): return nonzero if x is a structure") { Octave_object retval; int nargin = args.length (); if (nargin == 1) { tree_constant arg = args(0); if (arg.is_map ()) retval = 1.0; else retval = 0.0; } else print_usage ("is_struct"); return retval; } DEFUN ("struct_contains", Fstruct_contains, Sstruct_contains, 1, 2, "struct_contains (S, NAME)\n\ \n\ return nonzero if S is a structure with element NAME") { Octave_object retval; int nargin = args.length (); if (nargin == 2) { retval = 0.0; if (args(0).is_map () && args(1).is_string ()) { char *s = args(1).string_value (); tree_constant tmp = args(0).lookup_map_element (s, 0, 1); retval = (double) tmp.is_defined (); } } else print_usage ("struct_contains"); return retval; } static void check_dimensions (int& nr, int& nc, const char *warnfor) { if (nr < 0 || nc < 0) { if (user_pref.treat_neg_dim_as_zero) { nr = (nr < 0) ? 0 : nr; nc = (nc < 0) ? 0 : nc; if (user_pref.treat_neg_dim_as_zero < 0) warning ("%s: converting negative dimension to zero", warnfor); } else error ("%s: can't create a matrix with negative dimensions", warnfor); } } static void get_dimensions (const tree_constant& a, const char *warn_for, int& nr, int& nc) { if (a.is_scalar_type ()) { double tmp = a.double_value (); nr = nc = NINT (tmp); } else { nr = a.rows (); nc = a.columns (); if ((nr == 1 && nc == 2) || (nr == 2 && nc == 1)) { ColumnVector v = a.vector_value (); if (error_state) return; nr = NINT (v.elem (0)); nc = NINT (v.elem (1)); } else warning ("%s (A): use %s (size (A)) instead", warn_for, warn_for); } check_dimensions (nr, nc, warn_for); // May set error_state. } static void get_dimensions (const tree_constant& a, const tree_constant& b, const char *warn_for, int& nr, int& nc) { nr = NINT (a.double_value ()); nc = NINT (b.double_value ()); if (error_state) error ("%s: expecting two scalar arguments", warn_for); else check_dimensions (nr, nc, warn_for); // May set error_state. } static tree_constant fill_matrix (const tree_constant& a, double val, const char *warn_for) { int nr, nc; get_dimensions (a, warn_for, nr, nc); if (error_state) return tree_constant (); Matrix m (nr, nc, val); return m; } static tree_constant fill_matrix (const tree_constant& a, const tree_constant& b, double val, const char *warn_for) { int nr, nc; get_dimensions (a, b, warn_for, nr, nc); // May set error_state. if (error_state) return tree_constant (); Matrix m (nr, nc, val); return m; } DEFUN ("ones", Fones, Sones, 2, 1, "ones (N), ones (N, M), ones (X): create a matrix of all ones") { Octave_object retval; int nargin = args.length (); switch (nargin) { case 0: retval = 1.0; break; case 1: retval = fill_matrix (args(0), 1.0, "ones"); break; case 2: retval = fill_matrix (args(0), args(1), 1.0, "ones"); break; default: print_usage ("ones"); break; } return retval; } DEFUN ("zeros", Fzeros, Szeros, 2, 1, "zeros (N), zeros (N, M), zeros (X): create a matrix of all zeros") { Octave_object retval; int nargin = args.length (); switch (nargin) { case 0: retval = 0.0; break; case 1: retval = fill_matrix (args(0), 0.0, "zeros"); break; case 2: retval = fill_matrix (args(0), args(1), 0.0, "zeros"); break; default: print_usage ("zeros"); break; } return retval; } static tree_constant identity_matrix (const tree_constant& a) { int nr, nc; get_dimensions (a, "eye", nr, nc); // May set error_state. if (error_state) return tree_constant (); Matrix m (nr, nc, 0.0); if (nr > 0 && nc > 0) { int n = MIN (nr, nc); for (int i = 0; i < n; i++) m.elem (i, i) = 1.0; } return m; } static tree_constant identity_matrix (const tree_constant& a, const tree_constant& b) { int nr, nc; get_dimensions (a, b, "eye", nr, nc); // May set error_state. if (error_state) return tree_constant (); Matrix m (nr, nc, 0.0); if (nr > 0 && nc > 0) { int n = MIN (nr, nc); for (int i = 0; i < n; i++) m.elem (i, i) = 1.0; } return m; } DEFUN ("eye", Feye, Seye, 2, 1, "eye (N), eye (N, M), eye (X): create an identity matrix") { Octave_object retval; int nargin = args.length (); switch (nargin) { case 0: retval = 1.0; break; case 1: retval = identity_matrix (args(0)); break; case 2: retval = identity_matrix (args(0), args(1)); break; default: print_usage ("eye"); break; } return retval; } DEFUN ("linspace", Flinspace, Slinspace, 2, 1, "usage: linspace (x1, x2, n)\n\ \n\ Return a vector of n equally spaced points between x1 and x2\n\ inclusive.\n\ \n\ If the final argument is omitted, n = 100 is assumed.\n\ \n\ All three arguments must be scalars.\n\ \n\ See also: logspace") { Octave_object retval; int nargin = args.length (); int npoints = 100; if (nargin == 3) { double n = args(2).double_value (); if (! error_state) npoints = NINT (n); } else print_usage ("linspace"); if (! error_state) { if (npoints > 1) { tree_constant arg_1 = args(0); tree_constant arg_2 = args(1); if (arg_1.is_complex_type () || arg_2.is_complex_type ()) { Complex x1 = arg_1.complex_value (); Complex x2 = arg_2.complex_value (); if (! error_state) { ComplexRowVector rv = linspace (x1, x2, npoints); if (! error_state) retval (0) = tree_constant (rv, 0); } } else { double x1 = arg_1.double_value (); double x2 = arg_2.double_value (); if (! error_state) { RowVector rv = linspace (x1, x2, npoints); if (! error_state) retval (0) = tree_constant (rv, 0); } } } else error ("linspace: npoints must be greater than 2"); } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */