Mercurial > hg > octave-nkf
view liboctave/Sparse.h @ 5171:dc706eb5be9f
[project @ 2005-03-01 18:01:54 by jwe]
author | jwe |
---|---|
date | Tue, 01 Mar 2005 18:01:54 +0000 |
parents | 57077d0ddc8e |
children | 23b37da9fd5b |
line wrap: on
line source
// Template sparse classes /* Copyright (C) 2004 David Bateman Copyright (C) 1998-2004 Andy Adler Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #if !defined (octave_Sparse_h) #define octave_Sparse_h 1 #include <cassert> #include <cstddef> #include <iostream> #include "Array.h" #include "Array2.h" #include "dim-vector.h" #include "lo-utils.h" class idx_vector; // Two dimensional sparse class. Handles the reference counting for // all the derived classes. template <class T> class Sparse { protected: //-------------------------------------------------------------------- // The real representation of all Sparse arrays. //-------------------------------------------------------------------- class SparseRep { public: T *d; int *r; int *c; int nnz; int nrows; int ncols; int count; SparseRep (void) : d (0), r (0), c (new int [1]), nnz (0), nrows (0), ncols (0), count (1) { c[0] = 0; } SparseRep (int n) : d (0), r (0), c (new int [n+1]), nnz (0), nrows (n), ncols (n), count (1) { for (int i = 0; i < n + 1; i++) c[i] = 0; } SparseRep (int nr, int nc) : d (0), r (0), c (new int [nc+1]), nnz (0), nrows (nr), ncols (nc), count (1) { for (int i = 0; i < nc + 1; i++) c[i] = 0; } SparseRep (int nr, int nc, int nz) : d (new T [nz]), r (new int [nz]), c (new int [nc+1]), nnz (nz), nrows (nr), ncols (nc), count (1) { for (int i = 0; i < nc + 1; i++) c[i] = 0; } SparseRep (const SparseRep& a) : d (new T [a.nnz]), r (new int [a.nnz]), c (new int [a.ncols + 1]), nnz (a.nnz), nrows (a.nrows), ncols (a.ncols), count (1) { for (int i = 0; i < nnz; i++) { d[i] = a.d[i]; r[i] = a.r[i]; } for (int i = 0; i < ncols + 1; i++) c[i] = a.c[i]; } ~SparseRep (void) { delete [] d; delete [] r; delete [] c; } int length (void) const { return nnz; } int nonzero (void) const { return c [ncols]; } T& elem (int _r, int _c); T celem (int _r, int _c) const; T& data (int i) { return d[i]; } T cdata (int i) const { return d[i]; } int& ridx (int i) { return r[i]; } int cridx (int i) const { return r[i]; } int& cidx (int i) { return c[i]; } int ccidx (int i) const { return c[i]; } void maybe_compress (bool remove_zeros); void change_length (int nz); private: // No assignment! SparseRep& operator = (const SparseRep& a); }; //-------------------------------------------------------------------- void make_unique (void) { if (rep->count > 1) { --rep->count; rep = new SparseRep (*rep); } } public: // !!! WARNING !!! -- these should be protected, not public. You // should not access these data members directly! typename Sparse<T>::SparseRep *rep; dim_vector dimensions; protected: idx_vector *idx; int idx_count; private: typename Sparse<T>::SparseRep *nil_rep (void) const { static typename Sparse<T>::SparseRep *nr = new typename Sparse<T>::SparseRep (); nr->count++; return nr; } public: Sparse (void) : rep (nil_rep ()), dimensions (dim_vector(0,0)), idx (0), idx_count (0) { } explicit Sparse (int n) : rep (new typename Sparse<T>::SparseRep (n)), dimensions (dim_vector (n, n)), idx (0), idx_count (0) { } explicit Sparse (int nr, int nc) : rep (new typename Sparse<T>::SparseRep (nr, nc)), dimensions (dim_vector (nr, nc)), idx (0), idx_count (0) { } explicit Sparse (int nr, int nc, T val); Sparse (const dim_vector& dv, int nz) : rep (new typename Sparse<T>::SparseRep (dv(0), dv(1), nz)), dimensions (dv), idx (0), idx_count (0) { } Sparse (int nr, int nc, int nz) : rep (new typename Sparse<T>::SparseRep (nr, nc, nz)), dimensions (dim_vector (nr, nc)), idx (0), idx_count (0) { } // Type conversion case. template <class U> Sparse (const Sparse<U>& a); // No type conversion case. Sparse (const Sparse<T>& a) : rep (a.rep), dimensions (a.dimensions), idx (0), idx_count (0) { rep->count++; } public: Sparse (const dim_vector& dv); Sparse (const Sparse<T>& a, const dim_vector& dv); Sparse (const Array<T>& a, const Array<int>& r, const Array<int>& c, int nr, int nc, bool sum_terms); Sparse (const Array<T>& a, const Array<double>& r, const Array<double>& c, int nr, int nc, bool sum_terms); // Sparsify a normal matrix Sparse (const Array2<T>& a); Sparse (const Array<T>& a); virtual ~Sparse (void); Sparse<T>& operator = (const Sparse<T>& a) { if (this != &a) { if (--rep->count <= 0) delete rep; rep = a.rep; rep->count++; dimensions = a.dimensions; } idx_count = 0; idx = 0; return *this; } // Note that capacity and nnz are the amount of storage for non-zero // elements, while nonzero is the actual number of non-zero terms int capacity (void) const { return rep->length (); } int nnz (void) const { return capacity (); } int nonzero (void) const { return rep->nonzero (); } // Paranoid number of elements test for case of dims = (-1,-1) int numel (void) const { if (dim1() < 0 || dim2() < 0) return 0; else return dimensions.numel (); } int nelem (void) const { return capacity (); } int length (void) const { return numel (); } int dim1 (void) const { return dimensions(0); } int dim2 (void) const { return dimensions(1); } int rows (void) const { return dim1 (); } int cols (void) const { return dim2 (); } int columns (void) const { return dim2 (); } int get_row_index (int k) { return ridx (k); } int get_col_index (int k) { int ret = 0; while (cidx(ret+1) < k) ret++; return ret; } size_t byte_size (void) const { return (cols () + 1) * sizeof (int) + capacity () * (sizeof (T) + sizeof (int)); } dim_vector dims (void) const { return dimensions; } Sparse<T> squeeze (void) const { return *this; } int compute_index (const Array<int>& ra_idx) const; T range_error (const char *fcn, int n) const; T& range_error (const char *fcn, int n); T range_error (const char *fcn, int i, int j) const; T& range_error (const char *fcn, int i, int j); T range_error (const char *fcn, const Array<int>& ra_idx) const; T& range_error (const char *fcn, const Array<int>& ra_idx); // No checking, even for multiple references, ever. T& xelem (int n) { int i = n % rows (), j = n / rows(); return xelem (i, j); } T xelem (int n) const { int i = n % rows (), j = n / rows(); return xelem (i, j); } T& xelem (int i, int j) { return rep->elem (i, j); } T xelem (int i, int j) const { return rep->celem (i, j); } T& xelem (const Array<int>& ra_idx) { return xelem (compute_index (ra_idx)); } T xelem (const Array<int>& ra_idx) const { return xelem (compute_index (ra_idx)); } // XXX FIXME XXX -- would be nice to fix this so that we don't // unnecessarily force a copy, but that is not so easy, and I see no // clean way to do it. T& checkelem (int n) { if (n < 0 || n >= numel ()) return range_error ("T& Sparse<T>::checkelem", n); else { make_unique (); return xelem (n); } } T& checkelem (int i, int j) { if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ()) return range_error ("T& Sparse<T>::checkelem", i, j); else { make_unique (); return xelem (i, j); } } T& checkelem (const Array<int>& ra_idx) { int i = compute_index (ra_idx); if (i < 0) return range_error ("T& Sparse<T>::checkelem", ra_idx); else return elem (i); } T& elem (int n) { make_unique (); return xelem (n); } T& elem (int i, int j) { make_unique (); return xelem (i, j); } T& elem (const Array<int>& ra_idx) { return Sparse<T>::elem (compute_index (ra_idx)); } #if defined (BOUNDS_CHECKING) T& operator () (int n) { return checkelem (n); } T& operator () (int i, int j) { return checkelem (i, j); } T& operator () (const Array<int>& ra_idx) { return checkelem (ra_idx); } #else T& operator () (int n) { return elem (n); } T& operator () (int i, int j) { return elem (i, j); } T& operator () (const Array<int>& ra_idx) { return elem (ra_idx); } #endif T checkelem (int n) const { if (n < 0 || n >= numel ()) return range_error ("T Sparse<T>::checkelem", n); else return xelem (n); } T checkelem (int i, int j) const { if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ()) return range_error ("T Sparse<T>::checkelem", i, j); else return xelem (i, j); } T checkelem (const Array<int>& ra_idx) const { int i = compute_index (ra_idx); if (i < 0) return range_error ("T Sparse<T>::checkelem", ra_idx); else return Sparse<T>::elem (i); } T elem (int n) const { return xelem (n); } T elem (int i, int j) const { return xelem (i, j); } T elem (const Array<int>& ra_idx) const { return Sparse<T>::elem (compute_index (ra_idx)); } #if defined (BOUNDS_CHECKING) T operator () (int n) const { return checkelem (n); } T operator () (int i, int j) const { return checkelem (i, j); } T operator () (const Array<int>& ra_idx) const { return checkelem (ra_idx); } #else T operator () (int n) const { return elem (n); } T operator () (int i, int j) const { return elem (i, j); } T operator () (const Array<int>& ra_idx) const { return elem (ra_idx); } #endif Sparse<T> maybe_compress (bool remove_zeros = false) { rep->maybe_compress (remove_zeros); return (*this); } Sparse<T> reshape (const dim_vector& new_dims) const; // !!! WARNING !!! -- the following resize_no_fill functions are // public because template friends don't work properly with versions // of gcc earlier than 3.3. You should use these functions only in // classes that are derived from Sparse<T>. // protected: void resize_no_fill (int r, int c); void resize_no_fill (const dim_vector& dv); public: Sparse<T> permute (const Array<int>& vec, bool inv = false) const; Sparse<T> ipermute (const Array<int>& vec) const { return permute (vec, true); } void resize (int r, int c) { resize_no_fill (r, c); } void resize (const dim_vector& dv) { resize_no_fill (dv); } void change_capacity (int nz) { rep->change_length (nz); } Sparse<T>& insert (const Sparse<T>& a, int r, int c); Sparse<T>& insert (const Sparse<T>& a, const Array<int>& idx); bool is_square (void) const { return (dim1 () == dim2 ()); } bool is_empty (void) const { return (rows () < 1 && cols () < 1); } Sparse<T> transpose (void) const; T* data (void) { make_unique (); return rep->d; } T& data (int i) { make_unique (); return rep->data (i); } T* xdata (void) { return rep->d; } T& xdata (int i) { return rep->data (i); } T data (int i) const { return rep->data (i); } T* data (void) const { return rep->d; } int* ridx (void) { make_unique (); return rep->r; } int& ridx (int i) { make_unique (); return rep->ridx (i); } int* xridx (void) { return rep->r; } int& xridx (int i) { return rep->ridx (i); } int ridx (int i) const { return rep->cridx (i); } int* ridx (void) const { return rep->r; } int* cidx (void) { make_unique (); return rep->c; } int& cidx (int i) { make_unique (); return rep->cidx (i); } int* xcidx (void) { return rep->c; } int& xcidx (int i) { return rep->cidx (i); } int cidx (int i) const { return rep->ccidx (i); } int* cidx (void) const { return rep->c; } int ndims (void) const { return dimensions.length (); } void clear_index (void); void set_index (const idx_vector& i); int index_count (void) const { return idx_count; } idx_vector *get_idx (void) const { return idx; } void maybe_delete_elements (idx_vector& i); void maybe_delete_elements (idx_vector& i, idx_vector& j); void maybe_delete_elements (Array<idx_vector>& ra_idx); Sparse<T> value (void); Sparse<T> index (idx_vector& i, int resize_ok = 0) const; Sparse<T> index (idx_vector& i, idx_vector& j, int resize_ok = 0) const; Sparse<T> index (Array<idx_vector>& ra_idx, int resize_ok = 0) const; void print_info (std::ostream& os, const std::string& prefix) const; }; // NOTE: these functions should be friends of the Sparse<T> class and // Sparse<T>::dimensions should be protected, not public, but we can't // do that because of bugs in gcc prior to 3.3. template <class LT, class RT> /* friend */ int assign (Sparse<LT>& lhs, const Sparse<RT>& rhs); template <class LT, class RT> /* friend */ int assign1 (Sparse<LT>& lhs, const Sparse<RT>& rhs); #define INSTANTIATE_SPARSE_ASSIGN(LT, RT) \ template int assign (Sparse<LT>&, const Sparse<RT>&); \ template int assign1 (Sparse<LT>&, const Sparse<RT>&); #define INSTANTIATE_SPARSE(T) \ template class Sparse<T>; #define INSTANTIATE_SPARSE_AND_ASSIGN(T) \ INSTANTIATE_SPARSE (T); \ INSTANTIATE_SPARSE_ASSIGN (T, T) #endif /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */