Mercurial > hg > octave-nkf
view scripts/general/accumdim.m @ 12541:dd2c70b30f28
Add tests for ifftshift.m
author | Robert T. Short <octave@phaselockedsystems.com.com> |
---|---|
date | Sat, 26 Mar 2011 06:50:12 -0700 |
parents | b0084095098e |
children | 6590446c2498 |
line wrap: on
line source
## Copyright (C) 2010-2011 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} accumdim (@var{subs}, @var{vals}, @var{dim}, @var{n}, @var{func}, @var{fillval}) ## Create an array by accumulating the slices of an array into the ## positions defined by their subscripts along a specified dimension. ## The subscripts are defined by the index vector @var{subs}. ## The dimension is specified by @var{dim}. If not given, it defaults ## to the first non-singleton dimension. ## ## The extent of the result matrix in the working dimension will be determined ## by the subscripts themselves. ## However, if @var{n} is defined it determines this extent. ## ## The default action of @code{accumdim} is to sum the subarrays with the ## same subscripts. This behavior can be modified by defining the @var{func} ## function. This should be a function or function handle that accepts an ## array and a dimension, and reduces the array along this dimension. ## As a special exception, the built-in @code{min} and @code{max} functions ## can be used directly, and @code{accumdim} accounts for the middle empty ## argument that is used in their calling. ## ## The slices of the returned array that have no subscripts associated with ## them are set to zero. Defining @var{fillval} to some other value allows ## these values to be defined. ## ## An example of the use of @code{accumdim} is: ## ## @example ## @group ## accumdim ([1, 2, 1, 2, 1], [7,-10,4;-5,-12,8;-12,2,8;-10,9,-3;-5,-3,-13]) ## @result{} ans = [-10,-11,-1;-15,-3,5] ## @end group ## @end example ## ## @seealso{accumarray} ## @end deftypefn function A = accumdim (subs, vals, dim, n = 0, func = [], fillval = 0) if (nargin < 2 || nargin > 5) print_usage (); endif if (isempty (fillval)) fillval = 0; endif if (! isvector (subs)) error ("accumdim: SUBS must be a subscript vector"); elseif (! isindex (subs)) # creates index cache error ("accumdim: indices must be positive integers"); else m = max (subs); if (n == 0) n = m; elseif (n < m) error ("accumdim: N index out of range"); endif endif sz = size (vals); if (nargin < 3) [~, dim] = max (sz != 1); # first non-singleton dim elseif (! isindex (dim)) error ("accumdim: DIM must be a valid dimension"); elseif (dim > length (sz)) sz(end+1:dim) = 1; endif sz(dim) = n; if (isempty (func) || func == @sum) ## Fast summation case. A = __accumdim_sum__ (subs, vals, dim, n); ## Fill in nonzero fill value if (fillval != 0) mask = true (n, 1); mask(subs) = false; subsc = {':'}(ones (1, length (sz))); subsc{dim} = mask; A(subsc{:}) = fillval; endif return endif ## The general case. ns = length (subs); ## Sort indices. [subs, idx] = sort (subs(:)); ## Identify runs. jdx = find (subs(1:ns-1) != subs(2:ns)); jdx = [jdx; ns]; ## Collect common slices. szc = num2cell (sz); szc{dim} = diff ([0; jdx]); subsc = {':'}(ones (1, length (sz))); subsc{dim} = idx; vals = mat2cell (vals(subsc{:}), szc{:}); ## Apply reductions. Special case min, max. if (func == @min || func == @max) vals = cellfun (func, vals, {[]}, {dim}, "uniformoutput", false); else vals = cellfun (func, vals, {dim}, "uniformoutput", false); endif subs = subs(jdx); ## Concatenate reduced slices. vals = cat (dim, vals{:}); ## Construct matrix of fillvals. if (fillval == 0) A = zeros (sz, class (vals)); else A = repmat (fillval, sz); endif ## Set the reduced values. subsc{dim} = subs; A(subsc{:}) = vals; endfunction %%test accumdim vs. accumarray %!shared a %! a = rand (5, 5, 5); %!assert (accumdim ([1;3;1;3;3], a)(:,2,3), accumarray ([1;3;1;3;3], a(:,2,3))) %!assert (accumdim ([2;3;2;2;2], a, 2, 4)(4,:,2), accumarray ([2;3;2;2;2], a(4,:,2), [1,4])) %!assert (accumdim ([2;3;2;1;2], a, 3, 3, @min)(1,5,:), accumarray ([2;3;2;1;2], a(1,5,:), [1,1,3], @min)) %!assert (accumdim ([1;3;2;2;1], a, 2, 3, @median)(4,:,5), accumarray ([1;3;2;2;1], a(4,:,5), [1,3], @median))