Mercurial > hg > octave-nkf
view scripts/linear-algebra/commutation_matrix.m @ 10509:ddbd812d09aa
properly compress sparse matrices after assembly
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Mon, 12 Apr 2010 12:57:44 +0200 |
parents | f0c3d3fc4903 |
children | 3140cb7a05a1 |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1999, 2000, 2002, 2005, 2006, 2007, 2009 ## Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} commutation_matrix (@var{m}, @var{n}) ## Return the commutation matrix ## @tex ## $K_{m,n}$ ## @end tex ## @ifnottex ## K(m,n) ## @end ifnottex ## which is the unique ## @tex ## $m n \times m n$ ## @end tex ## @ifnottex ## @var{m}*@var{n} by @var{m}*@var{n} ## @end ifnottex ## matrix such that ## @tex ## $K_{m,n} \cdot {\rm vec} (A) = {\rm vec} (A^T)$ ## @end tex ## @ifnottex ## @math{K(m,n) * vec(A) = vec(A')} ## @end ifnottex ## for all ## @tex ## $m\times n$ ## @end tex ## @ifnottex ## @math{m} by @math{n} ## @end ifnottex ## matrices ## @tex ## $A$. ## @end tex ## @ifnottex ## @math{A}. ## @end ifnottex ## ## If only one argument @var{m} is given, ## @tex ## $K_{m,m}$ ## @end tex ## @ifnottex ## @math{K(m,m)} ## @end ifnottex ## is returned. ## ## See Magnus and Neudecker (1988), Matrix differential calculus with ## applications in statistics and econometrics. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Created: 8 May 1995 ## Adapted-By: jwe function k = commutation_matrix (m, n) if (nargin < 1 || nargin > 2) print_usage (); else if (! (isscalar (m) && m == round (m) && m > 0)) error ("commutation_matrix: m must be a positive integer"); endif if (nargin == 1) n = m; elseif (! (isscalar (n) && n == round (n) && n > 0)) error ("commutation_matrix: n must be a positive integer"); endif endif ## It is clearly possible to make this a LOT faster! k = zeros (m * n, m * n); for i = 1 : m for j = 1 : n k ((i - 1) * n + j, (j - 1) * m + i) = 1; endfor endfor endfunction