Mercurial > hg > octave-nkf
view liboctave/CMatrix.cc @ 1000:de0df9547e08
[project @ 1994-12-21 15:56:47 by jwe]
author | jwe |
---|---|
date | Wed, 21 Dec 1994 15:56:47 +0000 |
parents | 53ad6947655f |
children | 18933dbd5e43 |
line wrap: on
line source
// Matrix manipulations. -*- C++ -*- /* Copyright (C) 1992, 1993, 1994 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <sys/types.h> #include <iostream.h> #include <float.h> #include <Complex.h> #include "mx-base.h" #include "CmplxDET.h" #include "CmplxSVD.h" #include "mx-inlines.cc" #include "lo-error.h" #include "f77-uscore.h" // Fortran functions we call. extern "C" { int F77_FCN (zgemm) (const char*, const char*, const int*, const int*, const int*, const Complex*, const Complex*, const int*, const Complex*, const int*, const Complex*, Complex*, const int*, long, long); int F77_FCN (zgemv) (const char*, const int*, const int*, const Complex*, const Complex*, const int*, const Complex*, const int*, const Complex*, Complex*, const int*, long); int F77_FCN (zgeco) (Complex*, const int*, const int*, int*, double*, Complex*); int F77_FCN (zgedi) (Complex*, const int*, const int*, int*, Complex*, Complex*, const int*); int F77_FCN (zgesl) (Complex*, const int*, const int*, int*, Complex*, const int*); int F77_FCN (zgelss) (const int*, const int*, const int*, Complex*, const int*, Complex*, const int*, double*, const double*, int*, Complex*, const int*, double*, int*); // Note that the original complex fft routines were not written for // double complex arguments. They have been modified by adding an // implicit double precision (a-h,o-z) statement at the beginning of // each subroutine. int F77_FCN (cffti) (const int*, Complex*); int F77_FCN (cfftf) (const int*, Complex*, Complex*); int F77_FCN (cfftb) (const int*, Complex*, Complex*); } #define KLUDGE_MATRICES #define TYPE Complex #define KL_MAT_TYPE ComplexMatrix #include "mx-kludge.cc" #undef KLUDGE_MATRICES #undef TYPE #undef KL_MAT_TYPE /* * Complex Matrix class */ ComplexMatrix::ComplexMatrix (const Matrix& a) : Array2<Complex> (a.rows (), a.cols ()) { for (int j = 0; j < cols (); j++) for (int i = 0; i < rows (); i++) elem (i, j) = a.elem (i, j); } ComplexMatrix::ComplexMatrix (const DiagMatrix& a) : Array2<Complex> (a.rows (), a.cols (), 0.0) { for (int i = 0; i < a.length (); i++) elem (i, i) = a.elem (i, i); } ComplexMatrix::ComplexMatrix (const ComplexDiagMatrix& a) : Array2<Complex> (a.rows (), a.cols (), 0.0) { for (int i = 0; i < a.length (); i++) elem (i, i) = a.elem (i, i); } #if 0 ComplexMatrix& ComplexMatrix::resize (int r, int c) { if (r < 0 || c < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimensions"); return *this; } int new_len = r * c; Complex* new_data = 0; if (new_len > 0) { new_data = new Complex [new_len]; int min_r = nr < r ? nr : r; int min_c = nc < c ? nc : c; for (int j = 0; j < min_c; j++) for (int i = 0; i < min_r; i++) new_data[r*j+i] = elem (i, j); } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } ComplexMatrix& ComplexMatrix::resize (int r, int c, double val) { if (r < 0 || c < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimensions"); return *this; } int new_len = r * c; Complex *new_data = 0; if (new_len > 0) { new_data = new Complex [new_len]; // There may be faster or cleaner ways to do this. if (r > nr || c > nc) copy (new_data, new_len, val); int min_r = nr < r ? nr : r; int min_c = nc < c ? nc : c; for (int j = 0; j < min_c; j++) for (int i = 0; i < min_r; i++) new_data[r*j+i] = elem (i, j); } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } ComplexMatrix& ComplexMatrix::resize (int r, int c, const Complex& val) { if (r < 0 || c < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimensions"); return *this; } int new_len = r * c; Complex *new_data = 0; if (new_len > 0) { new_data = new Complex [new_len]; // There may be faster or cleaner ways to do this. if (r > nr || c > nc) copy (new_data, new_len, val); int min_r = nr < r ? nr : r; int min_c = nc < c ? nc : c; for (int j = 0; j < min_c; j++) for (int i = 0; i < min_r; i++) new_data[r*j+i] = elem (i, j); } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } #endif int ComplexMatrix::operator == (const ComplexMatrix& a) const { if (rows () != a.rows () || cols () != a.cols ()) return 0; return equal (data (), a.data (), length ()); } int ComplexMatrix::operator != (const ComplexMatrix& a) const { return !(*this == a); } // destructive insert/delete/reorder operations ComplexMatrix& ComplexMatrix::insert (const Matrix& a, int r, int c) { int a_nr = a.rows (); int a_nc = a.cols (); if (r < 0 || r + a_nr - 1 > rows () || c < 0 || c + a_nc - 1 > cols ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int j = 0; j < a_nc; j++) for (int i = 0; i < a_nr; i++) elem (r+i, c+j) = a.elem (i, j); return *this; } ComplexMatrix& ComplexMatrix::insert (const RowVector& a, int r, int c) { int a_len = a.length (); if (r < 0 || r >= rows () || c < 0 || c + a_len - 1 > cols ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (r, c+i) = a.elem (i); return *this; } ComplexMatrix& ComplexMatrix::insert (const ColumnVector& a, int r, int c) { int a_len = a.length (); if (r < 0 || r + a_len - 1 > rows () || c < 0 || c >= cols ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (r+i, c) = a.elem (i); return *this; } ComplexMatrix& ComplexMatrix::insert (const DiagMatrix& a, int r, int c) { if (r < 0 || r + a.rows () - 1 > rows () || c < 0 || c + a.cols () - 1 > cols ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a.length (); i++) elem (r+i, c+i) = a.elem (i, i); return *this; } ComplexMatrix& ComplexMatrix::insert (const ComplexMatrix& a, int r, int c) { int a_nr = a.rows (); int a_nc = a.cols (); if (r < 0 || r + a_nr - 1 > rows () || c < 0 || c + a_nc - 1 > cols ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int j = 0; j < a_nc; j++) for (int i = 0; i < a_nr; i++) elem (r+i, c+j) = a.elem (i, j); return *this; } ComplexMatrix& ComplexMatrix::insert (const ComplexRowVector& a, int r, int c) { int a_len = a.length (); if (r < 0 || r >= rows () || c < 0 || c + a_len - 1 > cols ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (r, c+i) = a.elem (i); return *this; } ComplexMatrix& ComplexMatrix::insert (const ComplexColumnVector& a, int r, int c) { int a_len = a.length (); if (r < 0 || r + a_len - 1 > rows () || c < 0 || c >= cols ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (r+i, c) = a.elem (i); return *this; } ComplexMatrix& ComplexMatrix::insert (const ComplexDiagMatrix& a, int r, int c) { if (r < 0 || r + a.rows () - 1 > rows () || c < 0 || c + a.cols () - 1 > cols ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a.length (); i++) elem (r+i, c+i) = a.elem (i, i); return *this; } ComplexMatrix& ComplexMatrix::fill (double val) { int nr = rows (); int nc = cols (); if (nr > 0 && nc > 0) for (int j = 0; j < nc; j++) for (int i = 0; i < nr; i++) elem (i, j) = val; return *this; } ComplexMatrix& ComplexMatrix::fill (const Complex& val) { int nr = rows (); int nc = cols (); if (nr > 0 && nc > 0) for (int j = 0; j < nc; j++) for (int i = 0; i < nr; i++) elem (i, j) = val; return *this; } ComplexMatrix& ComplexMatrix::fill (double val, int r1, int c1, int r2, int c2) { int nr = rows (); int nc = cols (); if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0 || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int j = c1; j <= c2; j++) for (int i = r1; i <= r2; i++) elem (i, j) = val; return *this; } ComplexMatrix& ComplexMatrix::fill (const Complex& val, int r1, int c1, int r2, int c2) { int nr = rows (); int nc = cols (); if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0 || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } for (int j = c1; j <= c2; j++) for (int i = r1; i <= r2; i++) elem (i, j) = val; return *this; } ComplexMatrix ComplexMatrix::append (const Matrix& a) const { int nr = rows (); int nc = cols (); if (nr != a.rows ()) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return *this; } int nc_insert = nc; ComplexMatrix retval (nr, nc + a.cols ()); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const RowVector& a) const { int nr = rows (); int nc = cols (); if (nr != 1) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return *this; } int nc_insert = nc; ComplexMatrix retval (nr, nc + a.length ()); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const ColumnVector& a) const { int nr = rows (); int nc = cols (); if (nr != a.length ()) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return *this; } int nc_insert = nc; ComplexMatrix retval (nr, nc + 1); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const DiagMatrix& a) const { int nr = rows (); int nc = cols (); if (nr != a.rows ()) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return *this; } int nc_insert = nc; ComplexMatrix retval (nr, nc + a.cols ()); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const ComplexMatrix& a) const { int nr = rows (); int nc = cols (); if (nr != a.rows ()) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return *this; } int nc_insert = nc; ComplexMatrix retval (nr, nc + a.cols ()); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const ComplexRowVector& a) const { int nr = rows (); int nc = cols (); if (nr != 1) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return *this; } int nc_insert = nc; ComplexMatrix retval (nr, nc + a.length ()); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const ComplexColumnVector& a) const { int nr = rows (); int nc = cols (); if (nr != a.length ()) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return *this; } int nc_insert = nc; ComplexMatrix retval (nr, nc + 1); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::append (const ComplexDiagMatrix& a) const { int nr = rows (); int nc = cols (); if (nr != a.rows ()) { (*current_liboctave_error_handler) ("row dimension mismatch for append"); return *this; } int nc_insert = nc; ComplexMatrix retval (nr, nc + a.cols ()); retval.insert (*this, 0, 0); retval.insert (a, 0, nc_insert); return retval; } ComplexMatrix ComplexMatrix::stack (const Matrix& a) const { int nr = rows (); int nc = cols (); if (nc != a.cols ()) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return *this; } int nr_insert = nr; ComplexMatrix retval (nr + a.rows (), nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const RowVector& a) const { int nr = rows (); int nc = cols (); if (nc != a.length ()) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return *this; } int nr_insert = nr; ComplexMatrix retval (nr + 1, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const ColumnVector& a) const { int nr = rows (); int nc = cols (); if (nc != 1) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return *this; } int nr_insert = nr; ComplexMatrix retval (nr + a.length (), nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const DiagMatrix& a) const { int nr = rows (); int nc = cols (); if (nc != a.cols ()) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return *this; } int nr_insert = nr; ComplexMatrix retval (nr + a.rows (), nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const ComplexMatrix& a) const { int nr = rows (); int nc = cols (); if (nc != a.cols ()) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return *this; } int nr_insert = nr; ComplexMatrix retval (nr + a.rows (), nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const ComplexRowVector& a) const { int nr = rows (); int nc = cols (); if (nc != a.length ()) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return *this; } int nr_insert = nr; ComplexMatrix retval (nr + 1, nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const ComplexColumnVector& a) const { int nr = rows (); int nc = cols (); if (nc != 1) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return *this; } int nr_insert = nr; ComplexMatrix retval (nr + a.length (), nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::stack (const ComplexDiagMatrix& a) const { int nr = rows (); int nc = cols (); if (nc != a.cols ()) { (*current_liboctave_error_handler) ("column dimension mismatch for stack"); return *this; } int nr_insert = nr; ComplexMatrix retval (nr + a.rows (), nc); retval.insert (*this, 0, 0); retval.insert (a, nr_insert, 0); return retval; } ComplexMatrix ComplexMatrix::hermitian (void) const { int nr = rows (); int nc = cols (); ComplexMatrix result; if (length () > 0) { result.resize (nc, nr); for (int j = 0; j < nc; j++) for (int i = 0; i < nr; i++) result.elem (j, i) = conj (elem (i, j)); } return result; } ComplexMatrix ComplexMatrix::transpose (void) const { int nr = rows (); int nc = cols (); ComplexMatrix result (nc, nr); if (length () > 0) { for (int j = 0; j < nc; j++) for (int i = 0; i < nr; i++) result.elem (j, i) = elem (i, j); } return result; } Matrix real (const ComplexMatrix& a) { int a_len = a.length (); Matrix retval; if (a_len > 0) retval = Matrix (real_dup (a.data (), a_len), a.rows (), a.cols ()); return retval; } Matrix imag (const ComplexMatrix& a) { int a_len = a.length (); Matrix retval; if (a_len > 0) retval = Matrix (imag_dup (a.data (), a_len), a.rows (), a.cols ()); return retval; } ComplexMatrix conj (const ComplexMatrix& a) { int a_len = a.length (); ComplexMatrix retval; if (a_len > 0) retval = ComplexMatrix (conj_dup (a.data (), a_len), a.rows (), a.cols ()); return retval; } // resize is the destructive equivalent for this one ComplexMatrix ComplexMatrix::extract (int r1, int c1, int r2, int c2) const { if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } int new_r = r2 - r1 + 1; int new_c = c2 - c1 + 1; ComplexMatrix result (new_r, new_c); for (int j = 0; j < new_c; j++) for (int i = 0; i < new_r; i++) result.elem (i, j) = elem (r1+i, c1+j); return result; } // extract row or column i. ComplexRowVector ComplexMatrix::row (int i) const { int nc = cols (); if (i < 0 || i >= rows ()) { (*current_liboctave_error_handler) ("invalid row selection"); return ComplexRowVector (); } ComplexRowVector retval (nc); for (int j = 0; j < cols (); j++) retval.elem (j) = elem (i, j); return retval; } ComplexRowVector ComplexMatrix::row (char *s) const { if (! s) { (*current_liboctave_error_handler) ("invalid row selection"); return ComplexRowVector (); } char c = *s; if (c == 'f' || c == 'F') return row (0); else if (c == 'l' || c == 'L') return row (rows () - 1); else { (*current_liboctave_error_handler) ("invalid row selection"); return ComplexRowVector (); } } ComplexColumnVector ComplexMatrix::column (int i) const { int nr = rows (); if (i < 0 || i >= cols ()) { (*current_liboctave_error_handler) ("invalid column selection"); return ComplexColumnVector (); } ComplexColumnVector retval (nr); for (int j = 0; j < nr; j++) retval.elem (j) = elem (j, i); return retval; } ComplexColumnVector ComplexMatrix::column (char *s) const { if (! s) { (*current_liboctave_error_handler) ("invalid column selection"); return ComplexColumnVector (); } char c = *s; if (c == 'f' || c == 'F') return column (0); else if (c == 'l' || c == 'L') return column (cols () - 1); else { (*current_liboctave_error_handler) ("invalid column selection"); return ComplexColumnVector (); } } ComplexMatrix ComplexMatrix::inverse (void) const { int info; double rcond; return inverse (info, rcond); } ComplexMatrix ComplexMatrix::inverse (int& info) const { double rcond; return inverse (info, rcond); } ComplexMatrix ComplexMatrix::inverse (int& info, double& rcond) const { int nr = rows (); int nc = cols (); int len = length (); if (nr != nc) { (*current_liboctave_error_handler) ("inverse requires square matrix"); return ComplexMatrix (); } info = 0; int *ipvt = new int [nr]; Complex *z = new Complex [nr]; Complex *tmp_data = dup (data (), len); F77_FCN (zgeco) (tmp_data, &nr, &nc, ipvt, &rcond, z); volatile double tmp_rcond = rcond; if (tmp_rcond + 1.0 == 1.0) { info = -1; copy (tmp_data, data (), len); // Restore contents. } else { int job = 1; Complex dummy; F77_FCN (zgedi) (tmp_data, &nr, &nc, ipvt, &dummy, z, &job); } delete [] ipvt; delete [] z; return ComplexMatrix (tmp_data, nr, nc); } ComplexMatrix ComplexMatrix::pseudo_inverse (double tol) { ComplexSVD result (*this); DiagMatrix S = result.singular_values (); ComplexMatrix U = result.left_singular_matrix (); ComplexMatrix V = result.right_singular_matrix (); ColumnVector sigma = S.diag (); int r = sigma.length () - 1; int nr = rows (); int nc = cols (); if (tol <= 0.0) { if (nr > nc) tol = nr * sigma.elem (0) * DBL_EPSILON; else tol = nc * sigma.elem (0) * DBL_EPSILON; } while (r >= 0 && sigma.elem (r) < tol) r--; if (r < 0) return ComplexMatrix (nc, nr, 0.0); else { ComplexMatrix Ur = U.extract (0, 0, nr-1, r); DiagMatrix D = DiagMatrix (sigma.extract (0, r)) . inverse (); ComplexMatrix Vr = V.extract (0, 0, nc-1, r); return Vr * D * Ur.hermitian (); } } ComplexMatrix ComplexMatrix::fourier (void) const { int nr = rows (); int nc = cols (); int npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } int nn = 4*npts+15; Complex *wsave = new Complex [nn]; Complex *tmp_data = dup (data (), length ()); F77_FCN (cffti) (&npts, wsave); for (int j = 0; j < nsamples; j++) F77_FCN (cfftf) (&npts, &tmp_data[npts*j], wsave); delete [] wsave; return ComplexMatrix (tmp_data, nr, nc); } ComplexMatrix ComplexMatrix::ifourier (void) const { int nr = rows (); int nc = cols (); int npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } int nn = 4*npts+15; Complex *wsave = new Complex [nn]; Complex *tmp_data = dup (data (), length ()); F77_FCN (cffti) (&npts, wsave); for (int j = 0; j < nsamples; j++) F77_FCN (cfftb) (&npts, &tmp_data[npts*j], wsave); for (j = 0; j < npts*nsamples; j++) tmp_data[j] = tmp_data[j] / (double) npts; delete [] wsave; return ComplexMatrix (tmp_data, nr, nc); } ComplexMatrix ComplexMatrix::fourier2d (void) const { int nr = rows (); int nc = cols (); int npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } int nn = 4*npts+15; Complex *wsave = new Complex [nn]; Complex *tmp_data = dup (data (), length ()); F77_FCN (cffti) (&npts, wsave); for (int j = 0; j < nsamples; j++) F77_FCN (cfftf) (&npts, &tmp_data[npts*j], wsave); delete [] wsave; npts = nc; nsamples = nr; nn = 4*npts+15; wsave = new Complex [nn]; Complex *row = new Complex[npts]; F77_FCN (cffti) (&npts, wsave); for (j = 0; j < nsamples; j++) { for (int i = 0; i < npts; i++) row[i] = tmp_data[i*nr + j]; F77_FCN (cfftf) (&npts, row, wsave); for (i = 0; i < npts; i++) tmp_data[i*nr + j] = row[i]; } delete [] wsave; delete [] row; return ComplexMatrix (tmp_data, nr, nc); } ComplexMatrix ComplexMatrix::ifourier2d (void) const { int nr = rows (); int nc = cols (); int npts, nsamples; if (nr == 1 || nc == 1) { npts = nr > nc ? nr : nc; nsamples = 1; } else { npts = nr; nsamples = nc; } int nn = 4*npts+15; Complex *wsave = new Complex [nn]; Complex *tmp_data = dup (data (), length ()); F77_FCN (cffti) (&npts, wsave); for (int j = 0; j < nsamples; j++) F77_FCN (cfftb) (&npts, &tmp_data[npts*j], wsave); delete [] wsave; for (j = 0; j < npts*nsamples; j++) tmp_data[j] = tmp_data[j] / (double) npts; npts = nc; nsamples = nr; nn = 4*npts+15; wsave = new Complex [nn]; Complex *row = new Complex[npts]; F77_FCN (cffti) (&npts, wsave); for (j = 0; j < nsamples; j++) { for (int i = 0; i < npts; i++) row[i] = tmp_data[i*nr + j]; F77_FCN (cfftb) (&npts, row, wsave); for (i = 0; i < npts; i++) tmp_data[i*nr + j] = row[i] / (double) npts; } delete [] wsave; delete [] row; return ComplexMatrix (tmp_data, nr, nc); } ComplexDET ComplexMatrix::determinant (void) const { int info; double rcond; return determinant (info, rcond); } ComplexDET ComplexMatrix::determinant (int& info) const { double rcond; return determinant (info, rcond); } ComplexDET ComplexMatrix::determinant (int& info, double& rcond) const { ComplexDET retval; int nr = rows (); int nc = cols (); if (nr == 0 || nc == 0) { Complex d[2]; d[0] = 1.0; d[1] = 0.0; retval = ComplexDET (d); } else { info = 0; int *ipvt = new int [nr]; Complex *z = new Complex [nr]; Complex *tmp_data = dup (data (), length ()); F77_FCN (zgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z); volatile double tmp_rcond = rcond; if (tmp_rcond + 1.0 == 1.0) { info = -1; retval = ComplexDET (); } else { int job = 10; Complex d[2]; F77_FCN (zgedi) (tmp_data, &nr, &nr, ipvt, d, z, &job); retval = ComplexDET (d); } delete [] tmp_data; delete [] ipvt; delete [] z; } return retval; } ComplexMatrix ComplexMatrix::solve (const Matrix& b) const { int info; double rcond; return solve (b, info, rcond); } ComplexMatrix ComplexMatrix::solve (const Matrix& b, int& info) const { double rcond; return solve (b, info, rcond); } ComplexMatrix ComplexMatrix::solve (const Matrix& b, int& info, double& rcond) const { ComplexMatrix tmp (b); return solve (tmp, info, rcond); } ComplexMatrix ComplexMatrix::solve (const ComplexMatrix& b) const { int info; double rcond; return solve (b, info, rcond); } ComplexMatrix ComplexMatrix::solve (const ComplexMatrix& b, int& info) const { double rcond; return solve (b, info, rcond); } ComplexMatrix ComplexMatrix::solve (const ComplexMatrix& b, int& info, double& rcond) const { ComplexMatrix retval; int nr = rows (); int nc = cols (); int b_nr = b.rows (); int b_nc = b.cols (); if (nr == 0 || nc == 0 || nr != nc || nr != b_nr) { (*current_liboctave_error_handler) ("matrix dimension mismatch in solution of linear equations"); return ComplexMatrix (); } info = 0; int *ipvt = new int [nr]; Complex *z = new Complex [nr]; Complex *tmp_data = dup (data (), length ()); F77_FCN (zgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z); volatile double tmp_rcond = rcond; if (tmp_rcond + 1.0 == 1.0) { info = -2; } else { int job = 0; Complex *result = dup (b.data (), b.length ()); for (int j = 0; j < b_nc; j++) F77_FCN (zgesl) (tmp_data, &nr, &nr, ipvt, &result[nr*j], &job); retval = ComplexMatrix (result, b_nr, b_nc); } delete [] tmp_data; delete [] ipvt; delete [] z; return retval; } ComplexColumnVector ComplexMatrix::solve (const ComplexColumnVector& b) const { int info; double rcond; return solve (b, info, rcond); } ComplexColumnVector ComplexMatrix::solve (const ComplexColumnVector& b, int& info) const { double rcond; return solve (b, info, rcond); } ComplexColumnVector ComplexMatrix::solve (const ComplexColumnVector& b, int& info, double& rcond) const { ComplexColumnVector retval; int nr = rows (); int nc = cols (); int b_len = b.length (); if (nr == 0 || nc == 0 || nr != nc || nr != b_len) { (*current_liboctave_error_handler) ("matrix dimension mismatch in solution of linear equations"); return ComplexColumnVector (); } info = 0; int *ipvt = new int [nr]; Complex *z = new Complex [nr]; Complex *tmp_data = dup (data (), length ()); F77_FCN (zgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z); volatile double tmp_rcond = rcond; if (tmp_rcond + 1.0 == 1.0) { info = -2; } else { int job = 0; Complex *result = dup (b.data (), b_len); F77_FCN (zgesl) (tmp_data, &nr, &nr, ipvt, result, &job); retval = ComplexColumnVector (result, b_len); } delete [] tmp_data; delete [] ipvt; delete [] z; return retval; } ComplexMatrix ComplexMatrix::lssolve (const ComplexMatrix& b) const { int info; int rank; return lssolve (b, info, rank); } ComplexMatrix ComplexMatrix::lssolve (const ComplexMatrix& b, int& info) const { int rank; return lssolve (b, info, rank); } ComplexMatrix ComplexMatrix::lssolve (const ComplexMatrix& b, int& info, int& rank) const { int nrhs = b.cols (); int m = rows (); int n = cols (); if (m == 0 || n == 0 || m != b.rows ()) { (*current_liboctave_error_handler) ("matrix dimension mismatch solution of linear equations"); return Matrix (); } Complex *tmp_data = dup (data (), length ()); int nrr = m > n ? m : n; ComplexMatrix result (nrr, nrhs); int i, j; for (j = 0; j < nrhs; j++) for (i = 0; i < m; i++) result.elem (i, j) = b.elem (i, j); Complex *presult = result.fortran_vec (); int len_s = m < n ? m : n; double *s = new double [len_s]; double rcond = -1.0; int lwork; if (m < n) lwork = 2*m + (nrhs > n ? nrhs : n); else lwork = 2*n + (nrhs > m ? nrhs : m); Complex *work = new Complex [lwork]; int lrwork = (5 * (m < n ? m : n)) - 4; lrwork = lrwork > 1 ? lrwork : 1; double *rwork = new double [lrwork]; F77_FCN (zgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s, &rcond, &rank, work, &lwork, rwork, &info); ComplexMatrix retval (n, nrhs); for (j = 0; j < nrhs; j++) for (i = 0; i < n; i++) retval.elem (i, j) = result.elem (i, j); delete [] tmp_data; delete [] s; delete [] work; delete [] rwork; return retval; } ComplexColumnVector ComplexMatrix::lssolve (const ComplexColumnVector& b) const { int info; int rank; return lssolve (b, info, rank); } ComplexColumnVector ComplexMatrix::lssolve (const ComplexColumnVector& b, int& info) const { int rank; return lssolve (b, info, rank); } ComplexColumnVector ComplexMatrix::lssolve (const ComplexColumnVector& b, int& info, int& rank) const { int nrhs = 1; int m = rows (); int n = cols (); if (m == 0 || n == 0 || m != b.length ()) { (*current_liboctave_error_handler) ("matrix dimension mismatch solution of least squares problem"); return ComplexColumnVector (); } Complex *tmp_data = dup (data (), length ()); int nrr = m > n ? m : n; ComplexColumnVector result (nrr); int i; for (i = 0; i < m; i++) result.elem (i) = b.elem (i); Complex *presult = result.fortran_vec (); int len_s = m < n ? m : n; double *s = new double [len_s]; double rcond = -1.0; int lwork; if (m < n) lwork = 2*m + (nrhs > n ? nrhs : n); else lwork = 2*n + (nrhs > m ? nrhs : m); Complex *work = new Complex [lwork]; int lrwork = (5 * (m < n ? m : n)) - 4; lrwork = lrwork > 1 ? lrwork : 1; double *rwork = new double [lrwork]; F77_FCN (zgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s, &rcond, &rank, work, &lwork, rwork, &info); ComplexColumnVector retval (n); for (i = 0; i < n; i++) retval.elem (i) = result.elem (i); delete [] tmp_data; delete [] s; delete [] work; delete [] rwork; return retval; } // matrix by diagonal matrix -> matrix operations ComplexMatrix& ComplexMatrix::operator += (const DiagMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix += operation attempted"); return *this; } for (int i = 0; i < a.length (); i++) elem (i, i) += a.elem (i, i); return *this; } ComplexMatrix& ComplexMatrix::operator -= (const DiagMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix -= operation attempted"); return *this; } for (int i = 0; i < a.length (); i++) elem (i, i) -= a.elem (i, i); return *this; } ComplexMatrix& ComplexMatrix::operator += (const ComplexDiagMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix += operation attempted"); return *this; } for (int i = 0; i < a.length (); i++) elem (i, i) += a.elem (i, i); return *this; } ComplexMatrix& ComplexMatrix::operator -= (const ComplexDiagMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix -= operation attempted"); return *this; } for (int i = 0; i < a.length (); i++) elem (i, i) -= a.elem (i, i); return *this; } // matrix by matrix -> matrix operations ComplexMatrix& ComplexMatrix::operator += (const Matrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix += operation attempted"); return *this; } if (nr == 0 || nc == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), length ()); return *this; } ComplexMatrix& ComplexMatrix::operator -= (const Matrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix -= operation attempted"); return *this; } if (nr == 0 || nc == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), length ()); return *this; } ComplexMatrix& ComplexMatrix::operator += (const ComplexMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix += operation attempted"); return *this; } if (nr == 0 || nc == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), length ()); return *this; } ComplexMatrix& ComplexMatrix::operator -= (const ComplexMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix -= operation attempted"); return *this; } if (nr == 0 || nc == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), length ()); return *this; } // unary operations Matrix ComplexMatrix::operator ! (void) const { return Matrix (not (data (), length ()), rows (), cols ()); } // matrix by scalar -> matrix operations ComplexMatrix operator + (const ComplexMatrix& a, double s) { return ComplexMatrix (add (a.data (), a.length (), s), a.rows (), a.cols ()); } ComplexMatrix operator - (const ComplexMatrix& a, double s) { return ComplexMatrix (subtract (a.data (), a.length (), s), a.rows (), a.cols ()); } ComplexMatrix operator * (const ComplexMatrix& a, double s) { return ComplexMatrix (multiply (a.data (), a.length (), s), a.rows (), a.cols ()); } ComplexMatrix operator / (const ComplexMatrix& a, double s) { return ComplexMatrix (divide (a.data (), a.length (), s), a.rows (), a.cols ()); } // scalar by matrix -> matrix operations ComplexMatrix operator + (double s, const ComplexMatrix& a) { return ComplexMatrix (add (a.data (), a.length (), s), a.rows (), a.cols ()); } ComplexMatrix operator - (double s, const ComplexMatrix& a) { return ComplexMatrix (subtract (s, a.data (), a.length ()), a.rows (), a.cols ()); } ComplexMatrix operator * (double s, const ComplexMatrix& a) { return ComplexMatrix (multiply (a.data (), a.length (), s), a.rows (), a.cols ()); } ComplexMatrix operator / (double s, const ComplexMatrix& a) { return ComplexMatrix (divide (s, a.data (), a.length ()), a.rows (), a.cols ()); } // matrix by column vector -> column vector operations ComplexColumnVector operator * (const ComplexMatrix& m, const ColumnVector& a) { ComplexColumnVector tmp (a); return m * tmp; } ComplexColumnVector operator * (const ComplexMatrix& m, const ComplexColumnVector& a) { int nr = m.rows (); int nc = m.cols (); if (nc != a.length ()) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ComplexColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); char trans = 'N'; int ld = nr; Complex alpha (1.0); Complex beta (0.0); int i_one = 1; Complex *y = new Complex [nr]; F77_FCN (zgemv) (&trans, &nr, &nc, &alpha, m.data (), &ld, a.data (), &i_one, &beta, y, &i_one, 1L); return ComplexColumnVector (y, nr); } // matrix by diagonal matrix -> matrix operations ComplexMatrix operator + (const ComplexMatrix& m, const DiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix addition attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (m); for (int i = 0; i < a.length (); i++) result.elem (i, i) += a.elem (i, i); return result; } ComplexMatrix operator - (const ComplexMatrix& m, const DiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix subtraction attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (m); for (int i = 0; i < a.length (); i++) result.elem (i, i) -= a.elem (i, i); return result; } ComplexMatrix operator * (const ComplexMatrix& m, const DiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); int a_nc = a.cols (); if (nc != a.rows ()) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0 || a_nc == 0) return ComplexMatrix (nr, nc, 0.0); Complex *c = new Complex [nr*a_nc]; Complex *ctmp = 0; for (int j = 0; j < a.length (); j++) { int idx = j * nr; ctmp = c + idx; if (a.elem (j, j) == 1.0) { for (int i = 0; i < nr; i++) ctmp[i] = m.elem (i, j); } else if (a.elem (j, j) == 0.0) { for (int i = 0; i < nr; i++) ctmp[i] = 0.0; } else { for (int i = 0; i < nr; i++) ctmp[i] = a.elem (j, j) * m.elem (i, j); } } if (a.rows () < a_nc) { for (int i = nr * nc; i < nr * a_nc; i++) ctmp[i] = 0.0; } return ComplexMatrix (c, nr, a_nc); } ComplexMatrix operator + (const ComplexMatrix& m, const ComplexDiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix addition attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (m); for (int i = 0; i < a.length (); i++) result.elem (i, i) += a.elem (i, i); return result; } ComplexMatrix operator - (const ComplexMatrix& m, const ComplexDiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix subtraction attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (m); for (int i = 0; i < a.length (); i++) result.elem (i, i) -= a.elem (i, i); return result; } ComplexMatrix operator * (const ComplexMatrix& m, const ComplexDiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); int a_nc = a.cols (); if (nc != a.rows ()) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0 || a_nc == 0) return ComplexMatrix (nr, nc, 0.0); Complex *c = new Complex [nr*a_nc]; Complex *ctmp = 0; for (int j = 0; j < a.length (); j++) { int idx = j * nr; ctmp = c + idx; if (a.elem (j, j) == 1.0) { for (int i = 0; i < nr; i++) ctmp[i] = m.elem (i, j); } else if (a.elem (j, j) == 0.0) { for (int i = 0; i < nr; i++) ctmp[i] = 0.0; } else { for (int i = 0; i < nr; i++) ctmp[i] = a.elem (j, j) * m.elem (i, j); } } if (a.rows () < a_nc) { for (int i = nr * nc; i < nr * a_nc; i++) ctmp[i] = 0.0; } return ComplexMatrix (c, nr, a_nc); } // matrix by matrix -> matrix operations ComplexMatrix operator + (const ComplexMatrix& m, const Matrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix addition attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (add (m.data (), a.data (), m.length ()), nr, nc); } ComplexMatrix operator - (const ComplexMatrix& m, const Matrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix subtraction attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (subtract (m.data (), a.data (), m.length ()), nr, nc); } ComplexMatrix operator * (const ComplexMatrix& m, const Matrix& a) { ComplexMatrix tmp (a); return m * tmp; } ComplexMatrix operator * (const ComplexMatrix& m, const ComplexMatrix& a) { int nr = m.rows (); int nc = m.cols (); int a_nc = a.cols (); if (nc != a.rows ()) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0 || a_nc == 0) return ComplexMatrix (nr, nc, 0.0); char trans = 'N'; char transa = 'N'; int ld = nr; int lda = a.rows (); Complex alpha (1.0); Complex beta (0.0); Complex *c = new Complex [nr*a_nc]; F77_FCN (zgemm) (&trans, &transa, &nr, &a_nc, &nc, &alpha, m.data (), &ld, a.data (), &lda, &beta, c, &nr, 1L, 1L); return ComplexMatrix (c, nr, a_nc); } ComplexMatrix product (const ComplexMatrix& m, const Matrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix product attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (multiply (m.data (), a.data (), m.length ()), nr, nc); } ComplexMatrix quotient (const ComplexMatrix& m, const Matrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix quotient attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); return ComplexMatrix (divide (m.data (), a.data (), m.length ()), nr, nc); } // other operations ComplexMatrix map (c_c_Mapper f, const ComplexMatrix& a) { ComplexMatrix b (a); b.map (f); return b; } Matrix map (d_c_Mapper f, const ComplexMatrix& a) { int a_nc = a.cols (); int a_nr = a.rows (); Matrix b (a_nr, a_nc); for (int j = 0; j < a_nc; j++) for (int i = 0; i < a_nr; i++) b.elem (i, j) = f (a.elem (i, j)); return b; } void ComplexMatrix::map (c_c_Mapper f) { for (int j = 0; j < cols (); j++) for (int i = 0; i < rows (); i++) elem (i, j) = f (elem (i, j)); } Matrix ComplexMatrix::all (void) const { int nr = rows (); int nc = cols (); Matrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int j = 0; j < nc; j++) { if (elem (0, j) == 0.0) { retval.elem (0, 0) = 0.0; break; } } } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int i = 0; i < nr; i++) { if (elem (i, 0) == 0.0) { retval.elem (0, 0) = 0.0; break; } } } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 1.0; for (int i = 0; i < nr; i++) { if (elem (i, j) == 0.0) { retval.elem (0, j) = 0.0; break; } } } } } return retval; } Matrix ComplexMatrix::any (void) const { int nr = rows (); int nc = cols (); Matrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int j = 0; j < nc; j++) { if (elem (0, j) != 0.0) { retval.elem (0, 0) = 1.0; break; } } } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int i = 0; i < nr; i++) { if (elem (i, 0) != 0.0) { retval.elem (0, 0) = 1.0; break; } } } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 0.0; for (int i = 0; i < nr; i++) { if (elem (i, j) != 0.0) { retval.elem (0, j) = 1.0; break; } } } } } return retval; } ComplexMatrix ComplexMatrix::cumprod (void) const { int nr = rows (); int nc = cols (); ComplexMatrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, nc); Complex prod = elem (0, 0); for (int j = 0; j < nc; j++) { retval.elem (0, j) = prod; if (j < nc - 1) prod *= elem (0, j+1); } } else if (nc == 1) { retval.resize (nr, 1); Complex prod = elem (0, 0); for (int i = 0; i < nr; i++) { retval.elem (i, 0) = prod; if (i < nr - 1) prod *= elem (i+1, 0); } } else { retval.resize (nr, nc); for (int j = 0; j < nc; j++) { Complex prod = elem (0, j); for (int i = 0; i < nr; i++) { retval.elem (i, j) = prod; if (i < nr - 1) prod *= elem (i+1, j); } } } } return retval; } ComplexMatrix ComplexMatrix::cumsum (void) const { int nr = rows (); int nc = cols (); ComplexMatrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, nc); Complex sum = elem (0, 0); for (int j = 0; j < nc; j++) { retval.elem (0, j) = sum; if (j < nc - 1) sum += elem (0, j+1); } } else if (nc == 1) { retval.resize (nr, 1); Complex sum = elem (0, 0); for (int i = 0; i < nr; i++) { retval.elem (i, 0) = sum; if (i < nr - 1) sum += elem (i+1, 0); } } else { retval.resize (nr, nc); for (int j = 0; j < nc; j++) { Complex sum = elem (0, j); for (int i = 0; i < nr; i++) { retval.elem (i, j) = sum; if (i < nr - 1) sum += elem (i+1, j); } } } } return retval; } ComplexMatrix ComplexMatrix::prod (void) const { int nr = rows (); int nc = cols (); ComplexMatrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int j = 0; j < nc; j++) retval.elem (0, 0) *= elem (0, j); } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 1.0; for (int i = 0; i < nr; i++) retval.elem (0, 0) *= elem (i, 0); } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 1.0; for (int i = 0; i < nr; i++) retval.elem (0, j) *= elem (i, j); } } } return retval; } ComplexMatrix ComplexMatrix::sum (void) const { int nr = rows (); int nc = cols (); ComplexMatrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int j = 0; j < nc; j++) retval.elem (0, 0) += elem (0, j); } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int i = 0; i < nr; i++) retval.elem (0, 0) += elem (i, 0); } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 0.0; for (int i = 0; i < nr; i++) retval.elem (0, j) += elem (i, j); } } } return retval; } ComplexMatrix ComplexMatrix::sumsq (void) const { int nr = rows (); int nc = cols (); ComplexMatrix retval; if (nr > 0 && nc > 0) { if (nr == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int j = 0; j < nc; j++) { Complex d = elem (0, j); retval.elem (0, 0) += d * d; } } else if (nc == 1) { retval.resize (1, 1); retval.elem (0, 0) = 0.0; for (int i = 0; i < nr; i++) { Complex d = elem (i, 0); retval.elem (0, 0) += d * d; } } else { retval.resize (1, nc); for (int j = 0; j < nc; j++) { retval.elem (0, j) = 0.0; for (int i = 0; i < nr; i++) { Complex d = elem (i, j); retval.elem (0, j) += d * d; } } } } return retval; } ComplexColumnVector ComplexMatrix::diag (void) const { return diag (0); } ComplexColumnVector ComplexMatrix::diag (int k) const { int nnr = rows (); int nnc = cols (); if (k > 0) nnc -= k; else if (k < 0) nnr += k; ComplexColumnVector d; if (nnr > 0 && nnc > 0) { int ndiag = (nnr < nnc) ? nnr : nnc; d.resize (ndiag); if (k > 0) { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i, i+k); } else if ( k < 0) { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i-k, i); } else { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i, i); } } else cerr << "diag: requested diagonal out of range\n"; return d; } // XXX FIXME XXX -- it would be nice to share some code among all the // min/max functions below. It would also be nice to combine the // min/max and min_loc/max_loc functions. ComplexColumnVector ComplexMatrix::row_min (void) const { ComplexColumnVector result; int nr = rows (); int nc = cols (); if (nr > 0 && nc > 0) { result.resize (nr); for (int i = 0; i < nr; i++) { int row_is_real_only = 1; for (int j = 0; j < nc; j++) if (imag (elem (i, j)) != 0.0) { row_is_real_only = 0; break; } if (row_is_real_only) { double res = real (elem (i, 0)); for (int j = 1; j < nc; j++) { double tmp = real (elem (i, j)); if (tmp < res) res = tmp; } result.elem (i) = res; } else { Complex res = elem (i, 0); double absres = abs (res); for (int j = 1; j < nc; j++) if (abs (elem (i, j)) < absres) { res = elem (i, j); absres = abs (res); } result.elem (i) = res; } } } return result; } ComplexColumnVector ComplexMatrix::row_min_loc (void) const { ComplexColumnVector result; int nr = rows (); int nc = cols (); if (nr > 0 && nc > 0) { result.resize (nr); for (int i = 0; i < nr; i++) { int column_is_real_only = 1; for (int j = 0; j < nc; j++) if (imag (elem (i, j)) != 0.0) { column_is_real_only = 0; break; } if (column_is_real_only) { double res = 0; double tmp = real (elem (i, 0)); for (int j = 1; j < nc; j++) if (real (elem (i, j)) < tmp) res = j; result.elem (i) = res + 1; } else { Complex res = 0; double absres = abs (elem (i, 0)); for (int j = 1; j < nc; j++) if (abs (elem (i, j)) < absres) { res = j; absres = abs (elem (i, j)); } result.elem (i) = res + 1; } } } return result; } ComplexColumnVector ComplexMatrix::row_max (void) const { ComplexColumnVector result; int nr = rows (); int nc = cols (); if (nr > 0 && nc > 0) { result.resize (nr); for (int i = 0; i < nr; i++) { int row_is_real_only = 1; for (int j = 0; j < nc; j++) if (imag (elem (i, j)) != 0.0) { row_is_real_only = 0; break; } if (row_is_real_only) { double res = real (elem (i, 0)); for (int j = 1; j < nc; j++) { double tmp = real (elem (i, j)); if (tmp > res) res = tmp; } result.elem (i) = res; } else { Complex res = elem (i, 0); double absres = abs (res); for (int j = 1; j < nc; j++) if (abs (elem (i, j)) > absres) { res = elem (i, j); absres = abs (res); } result.elem (i) = res; } } } return result; } ComplexColumnVector ComplexMatrix::row_max_loc (void) const { ComplexColumnVector result; int nr = rows (); int nc = cols (); if (nr > 0 && nc > 0) { result.resize (nr); for (int i = 0; i < nr; i++) { int column_is_real_only = 1; for (int j = 0; j < nc; j++) if (imag (elem (i, j)) != 0.0) { column_is_real_only = 0; break; } if (column_is_real_only) { double res = 0; double tmp = real (elem (i, 0)); for (int j = 1; j < nc; j++) if (real (elem (i, j)) > tmp) res = j; result.elem (i) = res + 1; } else { Complex res = 0; double absres = abs (elem (i, 0)); for (int j = 1; j < nc; j++) if (abs (elem (i, j)) > absres) { res = j; absres = abs (elem (i, j)); } result.elem (i) = res + 1; } } } return result; } ComplexRowVector ComplexMatrix::column_min (void) const { ComplexRowVector result; int nr = rows (); int nc = cols (); if (nr > 0 && nc > 0) { result.resize (nc); for (int j = 0; j < nc; j++) { int column_is_real_only = 1; for (int i = 0; i < nr; i++) if (imag (elem (i, j)) != 0.0) { column_is_real_only = 0; break; } if (column_is_real_only) { double res = real (elem (0, j)); for (int i = 1; i < nr; i++) { double tmp = real (elem (i, j)); if (tmp < res) res = tmp; } result.elem (j) = res; } else { Complex res = elem (0, j); double absres = abs (res); for (int i = 1; i < nr; i++) if (abs (elem (i, j)) < absres) { res = elem (i, j); absres = abs (res); } result.elem (j) = res; } } } return result; } ComplexRowVector ComplexMatrix::column_min_loc (void) const { ComplexRowVector result; int nr = rows (); int nc = cols (); if (nr > 0 && nc > 0) { result.resize (nc); for (int j = 0; j < nc; j++) { int column_is_real_only = 1; for (int i = 0; i < nr; i++) if (imag (elem (i, j)) != 0.0) { column_is_real_only = 0; break; } if (column_is_real_only) { double res = 0; double tmp = real (elem (0, j)); for (int i = 1; i < nr; i++) if (real (elem (i, j)) < tmp) res = i; result.elem (j) = res + 1; } else { Complex res = 0; double absres = abs (elem (0, j)); for (int i = 1; i < nr; i++) if (abs (elem (i, j)) < absres) { res = i; absres = abs (elem (i, j)); } result.elem (j) = res + 1; } } } return result; } ComplexRowVector ComplexMatrix::column_max (void) const { ComplexRowVector result; int nr = rows (); int nc = cols (); if (nr > 0 && nc > 0) { result.resize (nc); for (int j = 0; j < nc; j++) { int column_is_real_only = 1; for (int i = 0; i < nr; i++) if (imag (elem (i, j)) != 0.0) { column_is_real_only = 0; break; } if (column_is_real_only) { double res = real (elem (0, j)); for (int i = 1; i < nr; i++) { double tmp = real (elem (i, j)); if (tmp > res) res = tmp; } result.elem (j) = res; } else { Complex res = elem (0, j); double absres = abs (res); for (int i = 1; i < nr; i++) if (abs (elem (i, j)) > absres) { res = elem (i, j); absres = abs (res); } result.elem (j) = res; } } } return result; } ComplexRowVector ComplexMatrix::column_max_loc (void) const { ComplexRowVector result; int nr = rows (); int nc = cols (); if (nr > 0 && nc > 0) { result.resize (nc); for (int j = 0; j < nc; j++) { int column_is_real_only = 1; for (int i = 0; i < nr; i++) if (imag (elem (i, j)) != 0.0) { column_is_real_only = 0; break; } if (column_is_real_only) { double res = 0; double tmp = real (elem (0, j)); for (int i = 1; i < nr; i++) if (real (elem (i, j)) > tmp) res = i; result.elem (j) = res + 1; } else { Complex res = 0; double absres = abs (elem (0, j)); for (int i = 1; i < nr; i++) if (abs (elem (i, j)) > absres) { res = i; absres = abs (elem (i, j)); } result.elem (j) = res + 1; } } } return result; } // i/o ostream& operator << (ostream& os, const ComplexMatrix& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.rows (); i++) { for (int j = 0; j < a.cols (); j++) os << " " /* setw (field_width) */ << a.elem (i, j); os << "\n"; } return os; } istream& operator >> (istream& is, ComplexMatrix& a) { int nr = a.rows (); int nc = a.cols (); if (nr < 1 || nc < 1) is.clear (ios::badbit); else { Complex tmp; for (int i = 0; i < nr; i++) for (int j = 0; j < nc; j++) { is >> tmp; if (is) a.elem (i, j) = tmp; else break; } } return is; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */