Mercurial > hg > octave-nkf
view liboctave/DiagMatrix.cc @ 1000:de0df9547e08
[project @ 1994-12-21 15:56:47 by jwe]
author | jwe |
---|---|
date | Wed, 21 Dec 1994 15:56:47 +0000 |
parents | e04b38065c55 |
children |
line wrap: on
line source
// DiagMatrix manipulations. -*- C++ -*- /* Copyright (C) 1992, 1993, 1994 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <iostream.h> #include "Matrix.h" #include "mx-inlines.cc" #include "lo-error.h" /* * Diagonal Matrix class. */ #if 0 DiagMatrix& DiagMatrix::resize (int r, int c) { if (r < 0 || c < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimensions"); return *this; } int new_len = r < c ? r : c; double *new_data = (double *) NULL; if (new_len > 0) { new_data = new double [new_len]; int min_len = new_len < len ? new_len : len; for (int i = 0; i < min_len; i++) new_data[i] = data[i]; } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } DiagMatrix& DiagMatrix::resize (int r, int c, double val) { if (r < 0 || c < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimensions"); return *this; } int new_len = r < c ? r : c; double *new_data = (double *) NULL; if (new_len > 0) { new_data = new double [new_len]; int min_len = new_len < len ? new_len : len; for (int i = 0; i < min_len; i++) new_data[i] = data[i]; for (i = min_len; i < new_len; i++) new_data[i] = val; } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } #endif int DiagMatrix::operator == (const DiagMatrix& a) const { if (rows () != a.rows () || cols () != a.cols ()) return 0; return equal (data (), a.data (), length ()); } int DiagMatrix::operator != (const DiagMatrix& a) const { return !(*this == a); } DiagMatrix& DiagMatrix::fill (double val) { for (int i = 0; i < length (); i++) elem (i, i) = val; return *this; } DiagMatrix& DiagMatrix::fill (double val, int beg, int end) { if (beg < 0 || end >= length () || end < beg) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = beg; i < end; i++) elem (i, i) = val; return *this; } DiagMatrix& DiagMatrix::fill (const ColumnVector& a) { int len = length (); if (a.length () != len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < len; i++) elem (i, i) = a.elem (i); return *this; } DiagMatrix& DiagMatrix::fill (const RowVector& a) { int len = length (); if (a.length () != len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < len; i++) elem (i, i) = a.elem (i); return *this; } DiagMatrix& DiagMatrix::fill (const ColumnVector& a, int beg) { int a_len = a.length (); if (beg < 0 || beg + a_len >= length ()) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < a_len; i++) elem (i+beg, i+beg) = a.elem (i); return *this; } DiagMatrix& DiagMatrix::fill (const RowVector& a, int beg) { int a_len = a.length (); if (beg < 0 || beg + a_len >= length ()) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < a_len; i++) elem (i+beg, i+beg) = a.elem (i); return *this; } DiagMatrix DiagMatrix::transpose (void) const { return DiagMatrix (dup (data (), length ()), cols (), rows ()); } Matrix DiagMatrix::extract (int r1, int c1, int r2, int c2) const { if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } int new_r = r2 - r1 + 1; int new_c = c2 - c1 + 1; Matrix result (new_r, new_c); for (int j = 0; j < new_c; j++) for (int i = 0; i < new_r; i++) result.elem (i, j) = elem (r1+i, c1+j); return result; } // extract row or column i. RowVector DiagMatrix::row (int i) const { int nr = rows (); int nc = cols (); if (i < 0 || i >= nr) { (*current_liboctave_error_handler) ("invalid row selection"); return RowVector (); } RowVector retval (nc, 0.0); if (nr <= nc || (nr > nc && i < nc)) retval.elem (i) = elem (i, i); return retval; } RowVector DiagMatrix::row (char *s) const { if (s == (char *) NULL) { (*current_liboctave_error_handler) ("invalid row selection"); return RowVector (); } char c = *s; if (c == 'f' || c == 'F') return row (0); else if (c == 'l' || c == 'L') return row (rows () - 1); else { (*current_liboctave_error_handler) ("invalid row selection"); return RowVector (); } } ColumnVector DiagMatrix::column (int i) const { int nr = rows (); int nc = cols (); if (i < 0 || i >= nc) { (*current_liboctave_error_handler) ("invalid column selection"); return ColumnVector (); } ColumnVector retval (nr, 0.0); if (nr >= nc || (nr < nc && i < nr)) retval.elem (i) = elem (i, i); return retval; } ColumnVector DiagMatrix::column (char *s) const { if (s == (char *) NULL) { (*current_liboctave_error_handler) ("invalid column selection"); return ColumnVector (); } char c = *s; if (c == 'f' || c == 'F') return column (0); else if (c == 'l' || c == 'L') return column (cols () - 1); else { (*current_liboctave_error_handler) ("invalid column selection"); return ColumnVector (); } } DiagMatrix DiagMatrix::inverse (void) const { int info; return inverse (info); } DiagMatrix DiagMatrix::inverse (int &info) const { int nr = rows (); int nc = cols (); int len = length (); if (nr != nc) { (*current_liboctave_error_handler) ("inverse requires square matrix"); return DiagMatrix (); } info = 0; double *tmp_data = dup (data (), len); for (int i = 0; i < len; i++) { if (elem (i, i) == 0.0) { info = -1; copy (tmp_data, data (), len); // Restore contents. break; } else { tmp_data[i] = 1.0 / elem (i, i); } } return DiagMatrix (tmp_data, nr, nc); } // diagonal matrix by diagonal matrix -> diagonal matrix operations DiagMatrix& DiagMatrix::operator += (const DiagMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix += operation attempted"); return *this; } if (nc == 0 || nr == 0) return *this; double *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), length ()); return *this; } DiagMatrix& DiagMatrix::operator -= (const DiagMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix -= operation attempted"); return *this; } if (nr == 0 || nc == 0) return *this; double *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), length ()); return *this; } // diagonal matrix by scalar -> matrix operations Matrix operator + (const DiagMatrix& a, double s) { Matrix tmp (a.rows (), a.cols (), s); return a + tmp; } Matrix operator - (const DiagMatrix& a, double s) { Matrix tmp (a.rows (), a.cols (), -s); return a + tmp; } ComplexMatrix operator + (const DiagMatrix& a, const Complex& s) { ComplexMatrix tmp (a.rows (), a.cols (), s); return a + tmp; } ComplexMatrix operator - (const DiagMatrix& a, const Complex& s) { ComplexMatrix tmp (a.rows (), a.cols (), -s); return a + tmp; } // diagonal matrix by scalar -> diagonal matrix operations ComplexDiagMatrix operator * (const DiagMatrix& a, const Complex& s) { return ComplexDiagMatrix (multiply (a.data (), a.length (), s), a.rows (), a.cols ()); } ComplexDiagMatrix operator / (const DiagMatrix& a, const Complex& s) { return ComplexDiagMatrix (divide (a.data (), a.length (), s), a.rows (), a.cols ()); } // scalar by diagonal matrix -> matrix operations Matrix operator + (double s, const DiagMatrix& a) { Matrix tmp (a.rows (), a.cols (), s); return tmp + a; } Matrix operator - (double s, const DiagMatrix& a) { Matrix tmp (a.rows (), a.cols (), s); return tmp - a; } ComplexMatrix operator + (const Complex& s, const DiagMatrix& a) { ComplexMatrix tmp (a.rows (), a.cols (), s); return tmp + a; } ComplexMatrix operator - (const Complex& s, const DiagMatrix& a) { ComplexMatrix tmp (a.rows (), a.cols (), s); return tmp - a; } // scalar by diagonal matrix -> diagonal matrix operations ComplexDiagMatrix operator * (const Complex& s, const DiagMatrix& a) { return ComplexDiagMatrix (multiply (a.data (), a.length (), s), a.rows (), a.cols ()); } // diagonal matrix by column vector -> column vector operations ColumnVector operator * (const DiagMatrix& m, const ColumnVector& a) { int nr = m.rows (); int nc = m.cols (); int a_len = a.length (); if (nc != a_len) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ColumnVector (); } if (nc == 0 || nr == 0) return ColumnVector (0); ColumnVector result (nr); for (int i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } ComplexColumnVector operator * (const DiagMatrix& m, const ComplexColumnVector& a) { int nr = m.rows (); int nc = m.cols (); int a_len = a.length (); if (nc != a_len) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (int i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } // diagonal matrix by diagonal matrix -> diagonal matrix operations DiagMatrix operator * (const DiagMatrix& a, const DiagMatrix& b) { int nr_a = a.rows (); int nc_a = a.cols (); int nr_b = b.rows (); int nc_b = b.cols (); if (nc_a != nr_b) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return DiagMatrix (); } if (nr_a == 0 || nc_a == 0 || nc_b == 0) return DiagMatrix (nr_a, nc_a, 0.0); DiagMatrix c (nr_a, nc_b); int len = nr_a < nc_b ? nr_a : nc_b; for (int i = 0; i < len; i++) { double a_element = a.elem (i, i); double b_element = b.elem (i, i); if (a_element == 0.0 || b_element == 0.0) c.elem (i, i) = 0.0; else if (a_element == 1.0) c.elem (i, i) = b_element; else if (b_element == 1.0) c.elem (i, i) = a_element; else c.elem (i, i) = a_element * b_element; } return c; } ComplexDiagMatrix operator + (const DiagMatrix& m, const ComplexDiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix addition attempted"); return ComplexDiagMatrix (); } if (nc == 0 || nr == 0) return ComplexDiagMatrix (nr, nc); return ComplexDiagMatrix (add (m.data (), a.data (), m.length ()), nr, nc); } ComplexDiagMatrix operator - (const DiagMatrix& m, const ComplexDiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix subtraction attempted"); return ComplexDiagMatrix (); } if (nc == 0 || nr == 0) return ComplexDiagMatrix (nr, nc); return ComplexDiagMatrix (subtract (m.data (), a.data (), m.length ()), nr, nc); } ComplexDiagMatrix operator * (const DiagMatrix& a, const ComplexDiagMatrix& b) { int nr_a = a.rows (); int nc_a = a.cols (); int nr_b = b.rows (); int nc_b = b.cols (); if (nc_a != nr_b) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ComplexDiagMatrix (); } if (nr_a == 0 || nc_a == 0 || nc_b == 0) return ComplexDiagMatrix (nr_a, nc_a, 0.0); ComplexDiagMatrix c (nr_a, nc_b); int len = nr_a < nc_b ? nr_a : nc_b; for (int i = 0; i < len; i++) { double a_element = a.elem (i, i); Complex b_element = b.elem (i, i); if (a_element == 0.0 || b_element == 0.0) c.elem (i, i) = 0.0; else if (a_element == 1.0) c.elem (i, i) = b_element; else if (b_element == 1.0) c.elem (i, i) = a_element; else c.elem (i, i) = a_element * b_element; } return c; } ComplexDiagMatrix product (const DiagMatrix& m, const ComplexDiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix product attempted"); return ComplexDiagMatrix (); } if (nc == 0 || nr == 0) return ComplexDiagMatrix (nr, nc); return ComplexDiagMatrix (multiply (m.data (), a.data (), m.length ()), nr, nc); } // diagonal matrix by matrix -> matrix operations Matrix operator + (const DiagMatrix& m, const Matrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix addition attempted"); return Matrix (); } if (nr == 0 || nc == 0) return Matrix (nr, nc); Matrix result (a); for (int i = 0; i < m.length (); i++) result.elem (i, i) += m.elem (i, i); return result; } Matrix operator - (const DiagMatrix& m, const Matrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix subtraction attempted"); return Matrix (); } if (nr == 0 || nc == 0) return Matrix (nr, nc); Matrix result (-a); for (int i = 0; i < m.length (); i++) result.elem (i, i) += m.elem (i, i); return result; } Matrix operator * (const DiagMatrix& m, const Matrix& a) { int nr = m.rows (); int nc = m.cols (); int a_nr = a.rows (); int a_nc = a.cols (); if (nc != a_nr) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return Matrix (); } if (nr == 0 || nc == 0 || a_nc == 0) return Matrix (nr, a_nc, 0.0); Matrix c (nr, a_nc); for (int i = 0; i < m.length (); i++) { if (m.elem (i, i) == 1.0) { for (int j = 0; j < a_nc; j++) c.elem (i, j) = a.elem (i, j); } else if (m.elem (i, i) == 0.0) { for (int j = 0; j < a_nc; j++) c.elem (i, j) = 0.0; } else { for (int j = 0; j < a_nc; j++) c.elem (i, j) = m.elem (i, i) * a.elem (i, j); } } if (nr > nc) { for (int j = 0; j < a_nc; j++) for (int i = a_nr; i < nr; i++) c.elem (i, j) = 0.0; } return c; } ComplexMatrix operator + (const DiagMatrix& m, const ComplexMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix addition attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (a); for (int i = 0; i < m.length (); i++) result.elem (i, i) += m.elem (i, i); return result; } ComplexMatrix operator - (const DiagMatrix& m, const ComplexMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix subtraction attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (-a); for (int i = 0; i < m.length (); i++) result.elem (i, i) += m.elem (i, i); return result; } ComplexMatrix operator * (const DiagMatrix& m, const ComplexMatrix& a) { int nr = m.rows (); int nc = m.cols (); int a_nr = a.rows (); int a_nc = a.cols (); if (nc != a_nr) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0 || a_nc == 0) return ComplexMatrix (nr, nc, 0.0); ComplexMatrix c (nr, a_nc); for (int i = 0; i < m.length (); i++) { if (m.elem (i, i) == 1.0) { for (int j = 0; j < a_nc; j++) c.elem (i, j) = a.elem (i, j); } else if (m.elem (i, i) == 0.0) { for (int j = 0; j < a_nc; j++) c.elem (i, j) = 0.0; } else { for (int j = 0; j < a_nc; j++) c.elem (i, j) = m.elem (i, i) * a.elem (i, j); } } if (nr > nc) { for (int j = 0; j < a_nc; j++) for (int i = a_nr; i < nr; i++) c.elem (i, j) = 0.0; } return c; } // other operations ColumnVector DiagMatrix::diag (void) const { return diag (0); } // Could be optimized... ColumnVector DiagMatrix::diag (int k) const { int nnr = rows (); int nnc = cols (); if (k > 0) nnc -= k; else if (k < 0) nnr += k; ColumnVector d; if (nnr > 0 && nnc > 0) { int ndiag = (nnr < nnc) ? nnr : nnc; d.resize (ndiag); if (k > 0) { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i, i+k); } else if ( k < 0) { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i-k, i); } else { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i, i); } } else cerr << "diag: requested diagonal out of range\n"; return d; } ostream& operator << (ostream& os, const DiagMatrix& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.rows (); i++) { for (int j = 0; j < a.cols (); j++) { if (i == j) os << " " /* setw (field_width) */ << a.elem (i, i); else os << " " /* setw (field_width) */ << 0.0; } os << "\n"; } return os; } /* * Complex Diagonal Matrix class */ ComplexDiagMatrix::ComplexDiagMatrix (const RowVector& a) : DiagArray<Complex> (a.length ()) { for (int i = 0; i < length (); i++) elem (i, i) = a.elem (i); } ComplexDiagMatrix::ComplexDiagMatrix (const ColumnVector& a) : DiagArray<Complex> (a.length ()) { for (int i = 0; i < length (); i++) elem (i, i) = a.elem (i); } ComplexDiagMatrix::ComplexDiagMatrix (const DiagMatrix& a) : DiagArray<Complex> (a.rows (), a.cols ()) { for (int i = 0; i < length (); i++) elem (i, i) = a.elem (i, i); } #if 0 ComplexDiagMatrix& ComplexDiagMatrix::resize (int r, int c) { if (r < 0 || c < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimensions"); return *this; } int new_len = r < c ? r : c; Complex *new_data = (Complex *) NULL; if (new_len > 0) { new_data = new Complex [new_len]; int min_len = new_len < len ? new_len : len; for (int i = 0; i < min_len; i++) new_data[i] = data[i]; } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } ComplexDiagMatrix& ComplexDiagMatrix::resize (int r, int c, double val) { if (r < 0 || c < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimensions"); return *this; } int new_len = r < c ? r : c; Complex *new_data = (Complex *) NULL; if (new_len > 0) { new_data = new Complex [new_len]; int min_len = new_len < len ? new_len : len; for (int i = 0; i < min_len; i++) new_data[i] = data[i]; for (i = min_len; i < new_len; i++) new_data[i] = val; } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } ComplexDiagMatrix& ComplexDiagMatrix::resize (int r, int c, const Complex& val) { if (r < 0 || c < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimensions"); return *this; } int new_len = r < c ? r : c; Complex *new_data = (Complex *) NULL; if (new_len > 0) { new_data = new Complex [new_len]; int min_len = new_len < len ? new_len : len; for (int i = 0; i < min_len; i++) new_data[i] = data[i]; for (i = min_len; i < new_len; i++) new_data[i] = val; } delete [] data; nr = r; nc = c; len = new_len; data = new_data; return *this; } #endif int ComplexDiagMatrix::operator == (const ComplexDiagMatrix& a) const { if (rows () != a.rows () || cols () != a.cols ()) return 0; return equal (data (), a.data (), length ()); } int ComplexDiagMatrix::operator != (const ComplexDiagMatrix& a) const { return !(*this == a); } ComplexDiagMatrix ComplexDiagMatrix::hermitian (void) const { return ComplexDiagMatrix (conj_dup (data (), length ()), cols (), rows ()); } ComplexDiagMatrix& ComplexDiagMatrix::fill (double val) { for (int i = 0; i < length (); i++) elem (i, i) = val; return *this; } ComplexDiagMatrix& ComplexDiagMatrix::fill (const Complex& val) { for (int i = 0; i < length (); i++) elem (i, i) = val; return *this; } ComplexDiagMatrix& ComplexDiagMatrix::fill (double val, int beg, int end) { if (beg < 0 || end >= length () || end < beg) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = beg; i < end; i++) elem (i, i) = val; return *this; } ComplexDiagMatrix& ComplexDiagMatrix::fill (const Complex& val, int beg, int end) { if (beg < 0 || end >= length () || end < beg) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = beg; i < end; i++) elem (i, i) = val; return *this; } ComplexDiagMatrix& ComplexDiagMatrix::fill (const ColumnVector& a) { int len = length (); if (a.length () != len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < len; i++) elem (i, i) = a.elem (i); return *this; } ComplexDiagMatrix& ComplexDiagMatrix::fill (const ComplexColumnVector& a) { int len = length (); if (a.length () != len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < len; i++) elem (i, i) = a.elem (i); return *this; } ComplexDiagMatrix& ComplexDiagMatrix::fill (const RowVector& a) { int len = length (); if (a.length () != len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < len; i++) elem (i, i) = a.elem (i); return *this; } ComplexDiagMatrix& ComplexDiagMatrix::fill (const ComplexRowVector& a) { int len = length (); if (a.length () != len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < len; i++) elem (i, i) = a.elem (i); return *this; } ComplexDiagMatrix& ComplexDiagMatrix::fill (const ColumnVector& a, int beg) { int a_len = a.length (); if (beg < 0 || beg + a_len >= length ()) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < a_len; i++) elem (i+beg, i+beg) = a.elem (i); return *this; } ComplexDiagMatrix& ComplexDiagMatrix::fill (const ComplexColumnVector& a, int beg) { int a_len = a.length (); if (beg < 0 || beg + a_len >= length ()) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < a_len; i++) elem (i+beg, i+beg) = a.elem (i); return *this; } ComplexDiagMatrix& ComplexDiagMatrix::fill (const RowVector& a, int beg) { int a_len = a.length (); if (beg < 0 || beg + a_len >= length ()) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < a_len; i++) elem (i+beg, i+beg) = a.elem (i); return *this; } ComplexDiagMatrix& ComplexDiagMatrix::fill (const ComplexRowVector& a, int beg) { int a_len = a.length (); if (beg < 0 || beg + a_len >= length ()) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (int i = 0; i < a_len; i++) elem (i+beg, i+beg) = a.elem (i); return *this; } ComplexDiagMatrix ComplexDiagMatrix::transpose (void) const { return ComplexDiagMatrix (dup (data (), length ()), cols (), rows ()); } DiagMatrix real (const ComplexDiagMatrix& a) { DiagMatrix retval; int a_len = a.length (); if (a_len > 0) retval = DiagMatrix (real_dup (a.data (), a_len), a.rows (), a.cols ()); return retval; } DiagMatrix imag (const ComplexDiagMatrix& a) { DiagMatrix retval; int a_len = a.length (); if (a_len > 0) retval = DiagMatrix (imag_dup (a.data (), a_len), a.rows (), a.cols ()); return retval; } ComplexDiagMatrix conj (const ComplexDiagMatrix& a) { ComplexDiagMatrix retval; int a_len = a.length (); if (a_len > 0) retval = ComplexDiagMatrix (conj_dup (a.data (), a_len), a.rows (), a.cols ()); return retval; } // resize is the destructive analog for this one ComplexMatrix ComplexDiagMatrix::extract (int r1, int c1, int r2, int c2) const { if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } int new_r = r2 - r1 + 1; int new_c = c2 - c1 + 1; ComplexMatrix result (new_r, new_c); for (int j = 0; j < new_c; j++) for (int i = 0; i < new_r; i++) result.elem (i, j) = elem (r1+i, c1+j); return result; } // extract row or column i. ComplexRowVector ComplexDiagMatrix::row (int i) const { int nr = rows (); int nc = cols (); if (i < 0 || i >= nr) { (*current_liboctave_error_handler) ("invalid row selection"); return RowVector (); } ComplexRowVector retval (nc, 0.0); if (nr <= nc || (nr > nc && i < nc)) retval.elem (i) = elem (i, i); return retval; } ComplexRowVector ComplexDiagMatrix::row (char *s) const { if (s == (char *) NULL) { (*current_liboctave_error_handler) ("invalid row selection"); return ComplexRowVector (); } char c = *s; if (c == 'f' || c == 'F') return row (0); else if (c == 'l' || c == 'L') return row (rows () - 1); else { (*current_liboctave_error_handler) ("invalid row selection"); return ComplexRowVector (); } } ComplexColumnVector ComplexDiagMatrix::column (int i) const { int nr = rows (); int nc = cols (); if (i < 0 || i >= nc) { (*current_liboctave_error_handler) ("invalid column selection"); return ColumnVector (); } ComplexColumnVector retval (nr, 0.0); if (nr >= nc || (nr < nc && i < nr)) retval.elem (i) = elem (i, i); return retval; } ComplexColumnVector ComplexDiagMatrix::column (char *s) const { if (s == (char *) NULL) { (*current_liboctave_error_handler) ("invalid column selection"); return ColumnVector (); } char c = *s; if (c == 'f' || c == 'F') return column (0); else if (c == 'l' || c == 'L') return column (cols () - 1); else { (*current_liboctave_error_handler) ("invalid column selection"); return ColumnVector (); } } ComplexDiagMatrix ComplexDiagMatrix::inverse (void) const { int info; return inverse (info); } ComplexDiagMatrix ComplexDiagMatrix::inverse (int& info) const { int nr = rows (); int nc = cols (); if (nr != nc) { (*current_liboctave_error_handler) ("inverse requires square matrix"); return DiagMatrix (); } ComplexDiagMatrix retval (nr, nc); info = 0; for (int i = 0; i < length (); i++) { if (elem (i, i) == 0.0) { info = -1; return *this; } else retval.elem (i, i) = 1.0 / elem (i, i); } return *this; } // diagonal matrix by diagonal matrix -> diagonal matrix operations ComplexDiagMatrix& ComplexDiagMatrix::operator += (const DiagMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix += operation attempted"); return *this; } if (nr == 0 || nc == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), length ()); return *this; } ComplexDiagMatrix& ComplexDiagMatrix::operator -= (const DiagMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix -= operation attempted"); return *this; } if (nr == 0 || nc == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), length ()); return *this; } ComplexDiagMatrix& ComplexDiagMatrix::operator += (const ComplexDiagMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix += operation attempted"); return *this; } if (nr == 0 || nc == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), length ()); return *this; } ComplexDiagMatrix& ComplexDiagMatrix::operator -= (const ComplexDiagMatrix& a) { int nr = rows (); int nc = cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix -= operation attempted"); return *this; } if (nr == 0 || nc == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), length ()); return *this; } // diagonal matrix by scalar -> matrix operations ComplexMatrix operator + (const ComplexDiagMatrix& a, double s) { ComplexMatrix tmp (a.rows (), a.cols (), s); return a + tmp; } ComplexMatrix operator - (const ComplexDiagMatrix& a, double s) { ComplexMatrix tmp (a.rows (), a.cols (), -s); return a + tmp; } ComplexMatrix operator + (const ComplexDiagMatrix& a, const Complex& s) { ComplexMatrix tmp (a.rows (), a.cols (), s); return a + tmp; } ComplexMatrix operator - (const ComplexDiagMatrix& a, const Complex& s) { ComplexMatrix tmp (a.rows (), a.cols (), -s); return a + tmp; } // diagonal matrix by scalar -> diagonal matrix operations ComplexDiagMatrix operator * (const ComplexDiagMatrix& a, double s) { return ComplexDiagMatrix (multiply (a.data (), a.length (), s), a.rows (), a.cols ()); } ComplexDiagMatrix operator / (const ComplexDiagMatrix& a, double s) { return ComplexDiagMatrix (divide (a.data (), a.length (), s), a.rows (), a.cols ()); } // scalar by diagonal matrix -> matrix operations ComplexMatrix operator + (double s, const ComplexDiagMatrix& a) { ComplexMatrix tmp (a.rows (), a.cols (), s); return tmp + a; } ComplexMatrix operator - (double s, const ComplexDiagMatrix& a) { ComplexMatrix tmp (a.rows (), a.cols (), s); return tmp - a; } ComplexMatrix operator + (const Complex& s, const ComplexDiagMatrix& a) { ComplexMatrix tmp (a.rows (), a.cols (), s); return tmp + a; } ComplexMatrix operator - (const Complex& s, const ComplexDiagMatrix& a) { ComplexMatrix tmp (a.rows (), a.cols (), s); return tmp - a; } // scalar by diagonal matrix -> diagonal matrix operations ComplexDiagMatrix operator * (double s, const ComplexDiagMatrix& a) { return ComplexDiagMatrix (multiply (a.data (), a.length (), s), a.rows (), a.cols ()); } // diagonal matrix by column vector -> column vector operations ComplexColumnVector operator * (const ComplexDiagMatrix& m, const ColumnVector& a) { int nr = m.rows (); int nc = m.cols (); int a_len = a.length (); if (nc != a_len) { (*current_liboctave_error_handler) ("nonconformant matrix muliplication attempted"); return ComplexColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (int i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } ComplexColumnVector operator * (const ComplexDiagMatrix& m, const ComplexColumnVector& a) { int nr = m.rows (); int nc = m.cols (); int a_len = a.length (); if (nc != a_len) { (*current_liboctave_error_handler) ("nonconformant matrix muliplication attempted"); return ComplexColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (int i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } // diagonal matrix by diagonal matrix -> diagonal matrix operations ComplexDiagMatrix operator * (const ComplexDiagMatrix& a, const ComplexDiagMatrix& b) { int nr_a = a.rows (); int nc_a = a.cols (); int nr_b = b.rows (); int nc_b = b.cols (); if (nc_a != nr_b) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ComplexDiagMatrix (); } if (nr_a == 0 || nc_a == 0 || nc_b == 0) return ComplexDiagMatrix (nr_a, nc_a, 0.0); ComplexDiagMatrix c (nr_a, nc_b); int len = nr_a < nc_b ? nr_a : nc_b; for (int i = 0; i < len; i++) { Complex a_element = a.elem (i, i); Complex b_element = b.elem (i, i); if (a_element == 0.0 || b_element == 0.0) c.elem (i, i) = 0.0; else if (a_element == 1.0) c.elem (i, i) = b_element; else if (b_element == 1.0) c.elem (i, i) = a_element; else c.elem (i, i) = a_element * b_element; } return c; } ComplexDiagMatrix operator + (const ComplexDiagMatrix& m, const DiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix addition attempted"); return ComplexDiagMatrix (); } if (nr == 0 || nc == 0) return ComplexDiagMatrix (nr, nc); return ComplexDiagMatrix (add (m.data (), a.data (), m.length ()), nr, nc); } ComplexDiagMatrix operator - (const ComplexDiagMatrix& m, const DiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix subtraction attempted"); return ComplexDiagMatrix (); } if (nr == 0 || nc == 0) return ComplexDiagMatrix (nr, nc); return ComplexDiagMatrix (subtract (m.data (), a.data (), m.length ()), nr, nc); } ComplexDiagMatrix operator * (const ComplexDiagMatrix& a, const DiagMatrix& b) { int nr_a = a.rows (); int nc_a = a.cols (); int nr_b = b.rows (); int nc_b = b.cols (); if (nc_a != nr_b) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ComplexDiagMatrix (); } if (nr_a == 0 || nc_a == 0 || nc_b == 0) return ComplexDiagMatrix (nr_a, nc_a, 0.0); ComplexDiagMatrix c (nr_a, nc_b); int len = nr_a < nc_b ? nr_a : nc_b; for (int i = 0; i < len; i++) { Complex a_element = a.elem (i, i); double b_element = b.elem (i, i); if (a_element == 0.0 || b_element == 0.0) c.elem (i, i) = 0.0; else if (a_element == 1.0) c.elem (i, i) = b_element; else if (b_element == 1.0) c.elem (i, i) = a_element; else c.elem (i, i) = a_element * b_element; } return c; } ComplexDiagMatrix product (const ComplexDiagMatrix& m, const DiagMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix product attempted"); return ComplexDiagMatrix (); } if (nr == 0 || nc == 0) return ComplexDiagMatrix (nr, nc); return ComplexDiagMatrix (multiply (m.data (), a.data (), m.length ()), nr, nc); } // diagonal matrix by matrix -> matrix operations ComplexMatrix operator + (const ComplexDiagMatrix& m, const Matrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix addition attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (a); for (int i = 0; i < m.length (); i++) result.elem (i, i) += m.elem (i, i); return result; } ComplexMatrix operator - (const ComplexDiagMatrix& m, const Matrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix subtraction attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (-a); for (int i = 0; i < m.length (); i++) result.elem (i, i) += m.elem (i, i); return result; } ComplexMatrix operator * (const ComplexDiagMatrix& m, const Matrix& a) { int nr = m.rows (); int nc = m.cols (); int a_nr = a.rows (); int a_nc = a.cols (); if (nc != a_nr) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0 || a_nc == 0) return ComplexMatrix (nr, a_nc, 0.0); ComplexMatrix c (nr, a_nc); for (int i = 0; i < m.length (); i++) { if (m.elem (i, i) == 1.0) { for (int j = 0; j < a_nc; j++) c.elem (i, j) = a.elem (i, j); } else if (m.elem (i, i) == 0.0) { for (int j = 0; j < a_nc; j++) c.elem (i, j) = 0.0; } else { for (int j = 0; j < a_nc; j++) c.elem (i, j) = m.elem (i, i) * a.elem (i, j); } } if (nr > nc) { for (int j = 0; j < a_nc; j++) for (int i = a_nr; i < nr; i++) c.elem (i, j) = 0.0; } return c; } ComplexMatrix operator + (const ComplexDiagMatrix& m, const ComplexMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix addition attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (a); for (int i = 0; i < m.length (); i++) result.elem (i, i) += m.elem (i, i); return result; } ComplexMatrix operator - (const ComplexDiagMatrix& m, const ComplexMatrix& a) { int nr = m.rows (); int nc = m.cols (); if (nr != a.rows () || nc != a.cols ()) { (*current_liboctave_error_handler) ("nonconformant matrix subtraction attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0) return ComplexMatrix (nr, nc); ComplexMatrix result (-a); for (int i = 0; i < m.length (); i++) result.elem (i, i) += m.elem (i, i); return result; } ComplexMatrix operator * (const ComplexDiagMatrix& m, const ComplexMatrix& a) { int nr = m.rows (); int nc = m.cols (); int a_nr = a.rows (); int a_nc = a.cols (); if (nc != a_nr) { (*current_liboctave_error_handler) ("nonconformant matrix multiplication attempted"); return ComplexMatrix (); } if (nr == 0 || nc == 0 || a_nc == 0) return ComplexMatrix (nr, a_nc, 0.0); ComplexMatrix c (nr, a_nc); for (int i = 0; i < m.length (); i++) { if (m.elem (i, i) == 1.0) { for (int j = 0; j < a_nc; j++) c.elem (i, j) = a.elem (i, j); } else if (m.elem (i, i) == 0.0) { for (int j = 0; j < a_nc; j++) c.elem (i, j) = 0.0; } else { for (int j = 0; j < a_nc; j++) c.elem (i, j) = m.elem (i, i) * a.elem (i, j); } } if (nr > nc) { for (int j = 0; j < a_nc; j++) for (int i = a_nr; i < nr; i++) c.elem (i, j) = 0.0; } return c; } // other operations ComplexColumnVector ComplexDiagMatrix::diag (void) const { return diag (0); } // Could be optimized... ComplexColumnVector ComplexDiagMatrix::diag (int k) const { int nnr = rows (); int nnc = cols (); if (k > 0) nnc -= k; else if (k < 0) nnr += k; ComplexColumnVector d; if (nnr > 0 && nnc > 0) { int ndiag = (nnr < nnc) ? nnr : nnc; d.resize (ndiag); if (k > 0) { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i, i+k); } else if ( k < 0) { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i-k, i); } else { for (int i = 0; i < ndiag; i++) d.elem (i) = elem (i, i); } } else cerr << "diag: requested diagonal out of range\n"; return d; } // i/o ostream& operator << (ostream& os, const ComplexDiagMatrix& a) { Complex ZERO (0.0); // int field_width = os.precision () + 7; for (int i = 0; i < a.rows (); i++) { for (int j = 0; j < a.cols (); j++) { if (i == j) os << " " /* setw (field_width) */ << a.elem (i, i); else os << " " /* setw (field_width) */ << ZERO; } os << "\n"; } return os; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */