Mercurial > hg > octave-nkf
view scripts/polynomial/polyfit.m @ 11917:deb777a926ee release-3-0-x
style fixes
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Mon, 12 Jan 2009 12:13:21 +0100 |
parents | 377d908f7e40 |
children | f2af2233ce7f |
line wrap: on
line source
## Copyright (C) 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2005, 2006, ## 2007 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{p}, @var{s}, @var{mu}] =} polyfit (@var{x}, @var{y}, @var{n}) ## Return the coefficients of a polynomial @var{p}(@var{x}) of degree ## @var{n} that minimizes the least-squares-error of the fit. ## ## The polynomial coefficients are returned in a row vector. ## ## The second output is a structure containing the following fields: ## ## @table @samp ## @item R ## Triangular factor R from the QR decomposition. ## @item X ## The Vandermonde matrix used to compute the polynomial coefficients. ## @item df ## The degrees of freedom. ## @item normr ## The norm of the residuals. ## @item yf ## The values of the polynomial for each value of @var{x}. ## @end table ## ## The second output may be used by @code{polyval} to calculate the ## statistical error limits of the predicted values. ## ## When the third output, @var{mu}, is present the ## coefficients, @var{p}, are associated with a polynomial in ## @var{xhat} = (@var{x}-@var{mu}(1))/@var{mu}(2). ## Where @var{mu}(1) = mean (@var{x}), and @var{mu}(2) = std (@var{x}). ## This linear transformation of @var{x} improves the numerical ## stability of the fit. ## @seealso{polyval, polyconf, residue} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Created: 13 December 1994 ## Adapted-By: jwe function [p, s, mu] = polyfit (x, y, n) if (nargin < 3 || nargin > 4) print_usage (); endif if (nargout > 2) ## Normalized the x values. mu = [mean(x), std(x)]; x = (x - mu(1)) / mu(2); endif if (! size_equal (x, y)) error ("polyfit: x and y must be vectors of the same size"); endif if (! (isscalar (n) && n >= 0 && ! isinf (n) && n == round (n))) error ("polyfit: n must be a nonnegative integer"); endif y_is_row_vector = (rows (y) == 1); ## Reshape x & y into column vectors. l = numel (x); x = reshape (x, l, 1); y = reshape (y, l, 1); ## Construct the Vandermonde matrix. v = (x * ones (1, n+1)) .^ (ones (l, 1) * (n : -1 : 0)); ## Solve by QR decomposition. [q, r, k] = qr (v, 0); p = r \ (y' * q)'; p(k) = p; if (nargout > 1) yf = v*p; if (y_is_row_vector) s.yf = yf.'; else s.yf = yf; endif s.R = r; s.X = v; s.df = l - n - 1; s.normr = norm (yf - y); endif ## Return a row vector. p = p.'; ## Test difficult case where scaling is really needed. This example ## demonstrates the rather poor result which occurs when the dependent ## variable is not normalized properly. ## Also check the usage of 2nd & 3rd output arguments. %!test %! x = [ -1196.4, -1195.2, -1194, -1192.8, -1191.6, -1190.4, -1189.2, -1188, \ %! -1186.8, -1185.6, -1184.4, -1183.2, -1182]; %! y = [ 315571.7086, 315575.9618, 315579.4195, 315582.6206, 315585.4966, \ %! 315588.3172, 315590.9326, 315593.5934, 315596.0455, 315598.4201, \ %! 315600.7143, 315602.9508, 315605.1765 ]; %! [p1, s1] = polyfit (x, y, 10); %! [p2, s2, mu] = polyfit (x, y, 10); %! assert (s1.normr, 0.11264, 0.1) %! assert (s2.normr < s1.normr) %!test %! x = 1:4; %! p0 = [1i, 0, 2i, 4]; %! y0 = polyval (p0, x); %! p = polyfit (x, y0, numel(p0)-1); %! assert (p, p0, 1000*eps) %!test %! x = 1000 + (-5:5); %! xn = (x - mean (x)) / std (x); %! pn = ones (1,5); %! y = polyval (pn, xn); %! [p, s, mu] = polyfit (x, y, numel(pn)-1); %! [p2, s2] = polyfit (x, y, numel(pn)-1); %! assert (p, pn, s.normr) %! assert (s.yf, y, s.normr) %! assert (mu, [mean(x), std(x)]) %! assert (s.normr/s2.normr < 1e-9) %!test %! x = [1, 2, 3; 4, 5, 6]; %! y = [0, 0, 1; 1, 0, 0]; %! p = polyfit (x, y, 5); %! expected = [0, 1, -14, 65, -112, 60]/12; %! assert (p, expected, sqrt(eps)) endfunction