Mercurial > hg > octave-nkf
view scripts/statistics/distributions/binopdf.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | d9341b422488 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} binopdf (@var{x}, @var{n}, @var{p}) ## For each element of @var{x}, compute the probability density function (PDF) ## at @var{x} of the binomial distribution with parameters @var{n} and @var{p}, ## where @var{n} is the number of trials and @var{p} is the probability of ## success. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: PDF of the binomial distribution function pdf = binopdf (x, n, p) if (nargin != 3) print_usage (); endif if (! isscalar (n) || ! isscalar (p)) [retval, x, n, p] = common_size (x, n, p); if (retval > 0) error ("binopdf: X, N, and P must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (n) || iscomplex (p)) error ("binopdf: X, N, and P must not be complex"); endif if (isa (x, "single") || isa (n, "single") || isa (p, "single")); pdf = zeros (size (x), "single"); else pdf = zeros (size (x)); endif k = (x == fix (x)) & (n == fix (n)) & (n >= 0) & (p >= 0) & (p <= 1); pdf(! k) = NaN; k &= ((x >= 0) & (x <= n)); if (isscalar (n) && isscalar (p)) pdf(k) = exp (gammaln (n+1) - gammaln (x(k)+1) - gammaln (n-x(k)+1) + x(k)*log (p) + (n-x(k))*log (1-p)); else pdf(k) = exp (gammaln (n(k)+1) - gammaln (x(k)+1) - gammaln (n(k)-x(k)+1) + x(k).*log (p(k)) + (n(k)-x(k)).*log (1-p(k))); endif ## Special case inputs ksp = k & (p == 0) & (x == 0); pdf(ksp) = 1; ksp = k & (p == 1) & (x == n); pdf(ksp) = 1; endfunction %!shared x,y,tol %! if (ismac ()) %! tol = eps (); %! else %! tol = 0; %! endif %! x = [-1 0 1 2 3]; %! y = [0 1/4 1/2 1/4 0]; %!assert (binopdf (x, 2*ones (1,5), 0.5*ones (1,5)), y, tol) %!assert (binopdf (x, 2, 0.5*ones (1,5)), y, tol) %!assert (binopdf (x, 2*ones (1,5), 0.5), y, tol) %!assert (binopdf (x, 2*[0 -1 NaN 1.1 1], 0.5), [0 NaN NaN NaN 0]) %!assert (binopdf (x, 2, 0.5*[0 -1 NaN 3 1]), [0 NaN NaN NaN 0]) %!assert (binopdf ([x, NaN], 2, 0.5), [y, NaN], tol) ## Test Special input values %!assert (binopdf (0, 3, 0), 1); %!assert (binopdf (2, 2, 1), 1); %!assert (binopdf (1, 2, 1), 0); ## Test class of input preserved %!assert (binopdf (single ([x, NaN]), 2, 0.5), single ([y, NaN])) %!assert (binopdf ([x, NaN], single (2), 0.5), single ([y, NaN])) %!assert (binopdf ([x, NaN], 2, single (0.5)), single ([y, NaN])) ## Test input validation %!error binopdf () %!error binopdf (1) %!error binopdf (1,2) %!error binopdf (1,2,3,4) %!error binopdf (ones (3), ones (2), ones (2)) %!error binopdf (ones (2), ones (3), ones (2)) %!error binopdf (ones (2), ones (2), ones (3)) %!error binopdf (i, 2, 2) %!error binopdf (2, i, 2) %!error binopdf (2, 2, i)