Mercurial > hg > octave-nkf
view scripts/statistics/distributions/discrete_cdf.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | d9341b422488 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 2010-2015 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} discrete_cdf (@var{x}, @var{v}, @var{p}) ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) at @var{x} of a univariate discrete distribution which assumes the ## values in @var{v} with probabilities @var{p}. ## @end deftypefn function cdf = discrete_cdf (x, v, p) if (nargin != 3) print_usage (); endif if (! isvector (v)) error ("discrete_cdf: V must be a vector"); elseif (any (isnan (v))) error ("discrete_cdf: V must not have any NaN elements"); elseif (! isvector (p) || (length (p) != length (v))) error ("discrete_cdf: P must be a vector with length (V) elements"); elseif (! (all (p >= 0) && any (p))) error ("discrete_cdf: P must be a nonzero, non-negative vector"); endif p = p(:) / sum (p); # Reshape and normalize probability vector if (isa (x, "single") || isa (v, "single") || isa (p, "single")); cdf = NaN (size (x), "single"); else cdf = NaN (size (x)); endif k = ! isnan (x); [vs, vi] = sort (v); cdf(k) = [0 ; cumsum(p(vi))](lookup (vs, x(k)) + 1); endfunction %!shared x,v,p,y %! x = [-1 0.1 1.1 1.9 3]; %! v = 0.1:0.2:1.9; %! p = 1/length(v) * ones (1, length(v)); %! y = [0 0.1 0.6 1 1]; %!assert (discrete_cdf ([x, NaN], v, p), [y, NaN], eps) ## Test class of input preserved %!assert (discrete_cdf (single ([x, NaN]), v, p), single ([y, NaN]), 2*eps ("single")) %!assert (discrete_cdf ([x, NaN], single (v), p), single ([y, NaN]), 2*eps ("single")) %!assert (discrete_cdf ([x, NaN], v, single (p)), single ([y, NaN]), 2*eps ("single")) ## Test input validation %!error discrete_cdf () %!error discrete_cdf (1) %!error discrete_cdf (1,2) %!error discrete_cdf (1,2,3,4) %!error discrete_cdf (1, ones (2), ones (2,1)) %!error discrete_cdf (1, [1 ; NaN], ones (2,1)) %!error discrete_cdf (1, ones (2,1), ones (1,1)) %!error discrete_cdf (1, ones (2,1), [1 -1]) %!error discrete_cdf (1, ones (2,1), [1 NaN]) %!error discrete_cdf (1, ones (2,1), [0 0])