Mercurial > hg > octave-nkf
view scripts/statistics/distributions/exppdf.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | d9341b422488 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} exppdf (@var{x}, @var{lambda}) ## For each element of @var{x}, compute the probability density function (PDF) ## at @var{x} of the exponential distribution with mean @var{lambda}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: PDF of the exponential distribution function pdf = exppdf (x, lambda) if (nargin != 2) print_usage (); endif if (! isscalar (lambda)) [retval, x, lambda] = common_size (x, lambda); if (retval > 0) error ("exppdf: X and LAMBDA must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (lambda)) error ("exppdf: X and LAMBDA must not be complex"); endif if (isa (x, "single") || isa (lambda, "single")) pdf = zeros (size (x), "single"); else pdf = zeros (size (x)); endif k = isnan (x) | !(lambda > 0); pdf(k) = NaN; k = (x >= 0) & (x < Inf) & (lambda > 0); if (isscalar (lambda)) pdf(k) = exp (-x(k) / lambda) / lambda; else pdf(k) = exp (-x(k) ./ lambda(k)) ./ lambda(k); endif endfunction %!shared x,y %! x = [-1 0 0.5 1 Inf]; %! y = gampdf (x, 1, 2); %!assert (exppdf (x, 2*ones (1,5)), y) %!assert (exppdf (x, 2*[1 0 NaN 1 1]), [y(1) NaN NaN y(4:5)]) %!assert (exppdf ([x, NaN], 2), [y, NaN]) ## Test class of input preserved %!assert (exppdf (single ([x, NaN]), 2), single ([y, NaN])) %!assert (exppdf ([x, NaN], single (2)), single ([y, NaN])) ## Test input validation %!error exppdf () %!error exppdf (1) %!error exppdf (1,2,3) %!error exppdf (ones (3), ones (2)) %!error exppdf (ones (2), ones (3)) %!error exppdf (i, 2) %!error exppdf (2, i)