Mercurial > hg > octave-nkf
view scripts/statistics/distributions/geornd.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | 9fc020886ae9 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} geornd (@var{p}) ## @deftypefnx {Function File} {} geornd (@var{p}, @var{r}) ## @deftypefnx {Function File} {} geornd (@var{p}, @var{r}, @var{c}, @dots{}) ## @deftypefnx {Function File} {} geornd (@var{p}, [@var{sz}]) ## Return a matrix of random samples from the geometric distribution with ## parameter @var{p}. ## ## When called with a single size argument, return a square matrix with ## the dimension specified. When called with more than one scalar argument the ## first two arguments are taken as the number of rows and columns and any ## further arguments specify additional matrix dimensions. The size may also ## be specified with a vector of dimensions @var{sz}. ## ## If no size arguments are given then the result matrix is the size of ## @var{p}. ## ## The geometric distribution models the number of failures (@var{x}-1) of a ## Bernoulli trial with probability @var{p} before the first success (@var{x}). ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Random deviates from the geometric distribution function rnd = geornd (p, varargin) if (nargin < 1) print_usage (); endif if (nargin == 1) sz = size (p); elseif (nargin == 2) if (isscalar (varargin{1}) && varargin{1} >= 0) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0)) sz = varargin{1}; else error ("geornd: dimension vector must be row vector of non-negative integers"); endif elseif (nargin > 2) if (any (cellfun (@(x) (! isscalar (x) || x < 0), varargin))) error ("geornd: dimensions must be non-negative integers"); endif sz = [varargin{:}]; endif if (! isscalar (p) && ! isequal (size (p), sz)) error ("geornd: P must be scalar or of size SZ"); endif if (iscomplex (p)) error ("geornd: P must not be complex"); endif if (isa (p, "single")) cls = "single"; else cls = "double"; endif if (isscalar (p)) if (p > 0 && p < 1); rnd = floor (- rande (sz, cls) ./ log (1 - p)); elseif (p == 0) rnd = Inf (sz, cls); elseif (p == 1) rnd = zeros (sz, cls); elseif (p < 0 || p > 1) rnd = NaN (sz, cls); endif else rnd = floor (- rande (sz, cls) ./ log (1 - p)); k = !(p >= 0) | !(p <= 1); rnd(k) = NaN; k = (p == 0); rnd(k) = Inf; endif endfunction %!assert (size (geornd (0.5)), [1, 1]) %!assert (size (geornd (0.5*ones (2,1))), [2, 1]) %!assert (size (geornd (0.5*ones (2,2))), [2, 2]) %!assert (size (geornd (0.5, 3)), [3, 3]) %!assert (size (geornd (0.5, [4 1])), [4, 1]) %!assert (size (geornd (0.5, 4, 1)), [4, 1]) ## Test class of input preserved %!assert (class (geornd (0.5)), "double") %!assert (class (geornd (single (0.5))), "single") %!assert (class (geornd (single ([0.5 0.5]))), "single") %!assert (class (geornd (single (0))), "single") %!assert (class (geornd (single (1))), "single") ## Test input validation %!error geornd () %!error geornd (ones (3), ones (2)) %!error geornd (ones (2), ones (3)) %!error geornd (i) %!error geornd (1, -1) %!error geornd (1, ones (2)) %!error geornd (1, [2 -1 2]) %!error geornd (ones (2,2), 2, 3) %!error geornd (ones (2,2), 3, 2)