Mercurial > hg > octave-nkf
view scripts/statistics/distributions/nbininv.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | d6d04088ac9e |
children |
line wrap: on
line source
## Copyright (C) 2015 Lachlan Andrew ## Copyright (C) 2012-2015 Rik Wehbring ## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} nbininv (@var{x}, @var{n}, @var{p}) ## For each element of @var{x}, compute the quantile (the inverse of the CDF) ## at @var{x} of the negative binomial distribution with parameters ## @var{n} and @var{p}. ## ## When @var{n} is integer this is the Pascal distribution. ## When @var{n} is extended to real numbers this is the Polya distribution. ## ## The number of failures in a Bernoulli experiment with success probability ## @var{p} before the @var{n}-th success follows this distribution. ## @end deftypefn function inv = nbininv (x, n, p) if (nargin != 3) print_usage (); endif if (! isscalar (n) || ! isscalar (p)) [retval, x, n, p] = common_size (x, n, p); if (retval > 0) error ("nbininv: X, N, and P must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (n) || iscomplex (p)) error ("nbininv: X, N, and P must not be complex"); endif if (isa (x, "single") || isa (n, "single") || isa (p, "single")) inv = zeros (size (x), "single"); else inv = zeros (size (x)); endif k = (isnan (x) | (x < 0) | (x > 1) | isnan (n) | (n < 1) | (n == Inf) | isnan (p) | (p < 0) | (p > 1)); inv(k) = NaN; k = (x == 1) & (n > 0) & (n < Inf) & (p >= 0) & (p <= 1); inv(k) = Inf; k = find ((x >= 0) & (x < 1) & (n > 0) & (n < Inf) & (p > 0) & (p <= 1)); if (! isempty (k)) x = x(k); m = zeros (size (k)); if (isscalar (n) && isscalar (p)) [m, unfinished] = scalar_nbininv (x(:), n, p); m(unfinished) = bin_search_nbininv (x(unfinished), n, p); else m = bin_search_nbininv (x, n(k), p(k)); endif inv(k) = m; endif endfunction ## Core algorithm to calculate the inverse negative binomial, for n and p real ## scalars and y a column vector, and for which the output is not NaN or Inf. ## Compute CDF in batches of doubling size until CDF > x, or answer > 500. ## Return the locations of unfinished cases in k. function [m, k] = scalar_nbininv (x, n, p) k = 1:length (x); m = zeros (size (x)); prev_limit = 0; limit = 10; do cdf = nbincdf (prev_limit:limit, n, p); r = bsxfun (@le, x(k), cdf); [v, m(k)] = max (r, [], 2); # find first instance of x <= cdf m(k) += prev_limit - 1; k = k(v == 0); prev_limit = limit; limit += limit; until (isempty (k) || limit >= 1000) endfunction ## Vectorized binary search. ## Can handle vectors n and p, and is faster than the scalar case when the ## answer is large. ## Could be optimized to call nbincdf only for a subset of the x at each stage, ## but care must be taken to handle both scalar and vector n,p. Bookkeeping ## may cost more than the extra computations. function m = bin_search_nbininv (x, n, p) k = 1:length (x); lower = zeros (size (x)); limit = 1; while (any (k) && limit < 1e100) cdf = nbincdf (limit, n, p); k = (x > cdf); lower(k) = limit; limit += limit; end upper = max (2*lower, 1); k = find (lower != limit/2); # elements for which above loop finished for i = 1:ceil (log2 (max (lower))) mid = (upper + lower)/2; cdf = nbincdf (floor (mid), n, p); r = (x <= cdf); upper(r) = mid(r); lower(!r) = mid(!r); endfor m = ceil (lower); m(x > nbincdf (m, n, p)) += 1; # fix off-by-one errors from binary search endfunction %!shared x %! x = [-1 0 3/4 1 2]; %!assert (nbininv (x, ones (1,5), 0.5*ones (1,5)), [NaN 0 1 Inf NaN]) %!assert (nbininv (x, 1, 0.5*ones (1,5)), [NaN 0 1 Inf NaN]) %!assert (nbininv (x, ones (1,5), 0.5), [NaN 0 1 Inf NaN]) %!assert (nbininv (x, [1 0 NaN Inf 1], 0.5), [NaN NaN NaN NaN NaN]) %!assert (nbininv (x, [1 0 1.5 Inf 1], 0.5), [NaN NaN 2 NaN NaN]) %!assert (nbininv (x, 1, 0.5*[1 -Inf NaN Inf 1]), [NaN NaN NaN NaN NaN]) %!assert (nbininv ([x(1:2) NaN x(4:5)], 1, 0.5), [NaN 0 NaN Inf NaN]) ## Test class of input preserved %!assert (nbininv ([x, NaN], 1, 0.5), [NaN 0 1 Inf NaN NaN]) %!assert (nbininv (single ([x, NaN]), 1, 0.5), single ([NaN 0 1 Inf NaN NaN])) %!assert (nbininv ([x, NaN], single (1), 0.5), single ([NaN 0 1 Inf NaN NaN])) %!assert (nbininv ([x, NaN], 1, single (0.5)), single ([NaN 0 1 Inf NaN NaN])) ## Test accuracy, to within +/- 1 since it is a discrete distribution %!shared y, tol %! y = magic (3) + 1; %! tol = 1; %!assert (nbininv (nbincdf (1:10, 3, 0.1), 3, 0.1), 1:10, tol) %!assert (nbininv (nbincdf (1:10, 3./(1:10), 0.1), 3./(1:10), 0.1), 1:10, tol) %!assert (nbininv (nbincdf (y, 3./y, 1./y), 3./y, 1./y), y, tol) ## Test input validation %!error nbininv () %!error nbininv (1) %!error nbininv (1,2) %!error nbininv (1,2,3,4) %!error nbininv (ones (3), ones (2), ones (2)) %!error nbininv (ones (2), ones (3), ones (2)) %!error nbininv (ones (2), ones (2), ones (3)) %!error nbininv (i, 2, 2) %!error nbininv (2, i, 2) %!error nbininv (2, 2, i)