Mercurial > hg > octave-nkf
view scripts/statistics/distributions/normpdf.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | d9341b422488 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} normpdf (@var{x}) ## @deftypefnx {Function File} {} normpdf (@var{x}, @var{mu}, @var{sigma}) ## For each element of @var{x}, compute the probability density function (PDF) ## at @var{x} of the normal distribution with mean @var{mu} and ## standard deviation @var{sigma}. ## ## Default values are @var{mu} = 0, @var{sigma} = 1. ## @end deftypefn ## Author: TT <Teresa.Twaroch@ci.tuwien.ac.at> ## Description: PDF of the normal distribution function pdf = normpdf (x, mu = 0, sigma = 1) if (nargin != 1 && nargin != 3) print_usage (); endif if (! isscalar (mu) || ! isscalar (sigma)) [retval, x, mu, sigma] = common_size (x, mu, sigma); if (retval > 0) error ("normpdf: X, MU, and SIGMA must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("normpdf: X, MU, and SIGMA must not be complex"); endif if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")) pdf = zeros (size (x), "single"); else pdf = zeros (size (x)); endif if (isscalar (mu) && isscalar (sigma)) if (isfinite (mu) && (sigma > 0) && (sigma < Inf)) pdf = stdnormal_pdf ((x - mu) / sigma) / sigma; else pdf = NaN (size (x), class (pdf)); endif else k = isinf (mu) | !(sigma > 0) | !(sigma < Inf); pdf(k) = NaN; k = ! isinf (mu) & (sigma > 0) & (sigma < Inf); pdf(k) = stdnormal_pdf ((x(k) - mu(k)) ./ sigma(k)) ./ sigma(k); endif endfunction %!shared x,y %! x = [-Inf 1 2 Inf]; %! y = 1/sqrt(2*pi)*exp (-(x-1).^2/2); %!assert (normpdf (x, ones (1,4), ones (1,4)), y) %!assert (normpdf (x, 1, ones (1,4)), y) %!assert (normpdf (x, ones (1,4), 1), y) %!assert (normpdf (x, [0 -Inf NaN Inf], 1), [y(1) NaN NaN NaN]) %!assert (normpdf (x, 1, [Inf NaN -1 0]), [NaN NaN NaN NaN]) %!assert (normpdf ([x, NaN], 1, 1), [y, NaN]) ## Test class of input preserved %!assert (normpdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single")) %!assert (normpdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single")) %!assert (normpdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error normpdf () %!error normpdf (1,2) %!error normpdf (1,2,3,4) %!error normpdf (ones (3), ones (2), ones (2)) %!error normpdf (ones (2), ones (3), ones (2)) %!error normpdf (ones (2), ones (2), ones (3)) %!error normpdf (i, 2, 2) %!error normpdf (2, i, 2) %!error normpdf (2, 2, i)