Mercurial > hg > octave-nkf
view scripts/statistics/distributions/normrnd.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | 9fc020886ae9 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} normrnd (@var{mu}, @var{sigma}) ## @deftypefnx {Function File} {} normrnd (@var{mu}, @var{sigma}, @var{r}) ## @deftypefnx {Function File} {} normrnd (@var{mu}, @var{sigma}, @var{r}, @var{c}, @dots{}) ## @deftypefnx {Function File} {} normrnd (@var{mu}, @var{sigma}, [@var{sz}]) ## Return a matrix of random samples from the normal distribution with ## parameters mean @var{mu} and standard deviation @var{sigma}. ## ## When called with a single size argument, return a square matrix with ## the dimension specified. When called with more than one scalar argument the ## first two arguments are taken as the number of rows and columns and any ## further arguments specify additional matrix dimensions. The size may also ## be specified with a vector of dimensions @var{sz}. ## ## If no size arguments are given then the result matrix is the common size of ## @var{mu} and @var{sigma}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Random deviates from the normal distribution function rnd = normrnd (mu, sigma, varargin) if (nargin < 2) print_usage (); endif if (! isscalar (mu) || ! isscalar (sigma)) [retval, mu, sigma] = common_size (mu, sigma); if (retval > 0) error ("normrnd: mu and sigma must be of common size or scalars"); endif endif if (iscomplex (mu) || iscomplex (sigma)) error ("normrnd: MU and SIGMA must not be complex"); endif if (nargin == 2) sz = size (mu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0)) sz = varargin{1}; else error ("normrnd: dimension vector must be row vector of non-negative integers"); endif elseif (nargin > 3) if (any (cellfun (@(x) (! isscalar (x) || x < 0), varargin))) error ("normrnd: dimensions must be non-negative integers"); endif sz = [varargin{:}]; endif if (! isscalar (mu) && ! isequal (size (mu), sz)) error ("normrnd: mu and sigma must be scalar or of size SZ"); endif if (isa (mu, "single") || isa (sigma, "single")) cls = "single"; else cls = "double"; endif if (isscalar (mu) && isscalar (sigma)) if (isfinite (mu) && (sigma >= 0) && (sigma < Inf)) rnd = mu + sigma * randn (sz, cls); else rnd = NaN (sz, cls); endif else rnd = mu + sigma .* randn (sz, cls); k = ! isfinite (mu) | !(sigma > 0) | !(sigma < Inf); rnd(k) = NaN; endif endfunction %!assert (size (normrnd (1,2)), [1, 1]) %!assert (size (normrnd (ones (2,1), 2)), [2, 1]) %!assert (size (normrnd (ones (2,2), 2)), [2, 2]) %!assert (size (normrnd (1, 2*ones (2,1))), [2, 1]) %!assert (size (normrnd (1, 2*ones (2,2))), [2, 2]) %!assert (size (normrnd (1, 2, 3)), [3, 3]) %!assert (size (normrnd (1, 2, [4 1])), [4, 1]) %!assert (size (normrnd (1, 2, 4, 1)), [4, 1]) ## Test class of input preserved %!assert (class (normrnd (1, 2)), "double") %!assert (class (normrnd (single (1), 2)), "single") %!assert (class (normrnd (single ([1 1]), 2)), "single") %!assert (class (normrnd (1, single (2))), "single") %!assert (class (normrnd (1, single ([2 2]))), "single") ## Test input validation %!error normrnd () %!error normrnd (1) %!error normrnd (ones (3), ones (2)) %!error normrnd (ones (2), ones (3)) %!error normrnd (i, 2) %!error normrnd (2, i) %!error normrnd (1,2, -1) %!error normrnd (1,2, ones (2)) %!error normrnd (1, 2, [2 -1 2]) %!error normrnd (1,2, 1, ones (2)) %!error normrnd (1,2, 1, -1) %!error normrnd (ones (2,2), 2, 3) %!error normrnd (ones (2,2), 2, [3, 2]) %!error normrnd (ones (2,2), 2, 2, 3)