Mercurial > hg > octave-nkf
view scripts/statistics/distributions/unidcdf.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | d9341b422488 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 2007-2015 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} unidcdf (@var{x}, @var{n}) ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) at @var{x} of a discrete uniform distribution which assumes ## the integer values 1--@var{n} with equal probability. ## @end deftypefn function cdf = unidcdf (x, n) if (nargin != 2) print_usage (); endif if (! isscalar (n)) [retval, x, n] = common_size (x, n); if (retval > 0) error ("unidcdf: X and N must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (n)) error ("unidcdf: X and N must not be complex"); endif if (isa (x, "single") || isa (n, "single")) cdf = zeros (size (x), "single"); else cdf = zeros (size (x)); endif knan = isnan (x) | ! (n > 0 & n == fix (n)); if (any (knan(:))) cdf(knan) = NaN; endif k = (x >= n) & !knan; cdf(k) = 1; k = (x >= 1) & (x < n) & !knan; if (isscalar (n)) cdf(k) = floor (x(k)) / n; else cdf(k) = floor (x(k)) ./ n(k); endif endfunction %!shared x,y %! x = [0 1 2.5 10 11]; %! y = [0, 0.1 0.2 1.0 1.0]; %!assert (unidcdf (x, 10*ones (1,5)), y) %!assert (unidcdf (x, 10), y) %!assert (unidcdf (x, 10*[0 1 NaN 1 1]), [NaN 0.1 NaN y(4:5)]) %!assert (unidcdf ([x(1:2) NaN Inf x(5)], 10), [y(1:2) NaN 1 y(5)]) ## Test class of input preserved %!assert (unidcdf ([x, NaN], 10), [y, NaN]) %!assert (unidcdf (single ([x, NaN]), 10), single ([y, NaN])) %!assert (unidcdf ([x, NaN], single (10)), single ([y, NaN])) ## Test input validation %!error unidcdf () %!error unidcdf (1) %!error unidcdf (1,2,3) %!error unidcdf (ones (3), ones (2)) %!error unidcdf (ones (2), ones (3)) %!error unidcdf (i, 2) %!error unidcdf (2, i)