Mercurial > hg > octave-nkf
view scripts/statistics/distributions/unifpdf.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | 9fc020886ae9 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} unifpdf (@var{x}) ## @deftypefnx {Function File} {} unifpdf (@var{x}, @var{a}, @var{b}) ## For each element of @var{x}, compute the probability density function (PDF) ## at @var{x} of the uniform distribution on the interval [@var{a}, @var{b}]. ## ## Default values are @var{a} = 0, @var{b} = 1. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: PDF of the uniform distribution function pdf = unifpdf (x, a = 0, b = 1) if (nargin != 1 && nargin != 3) print_usage (); endif if (! isscalar (a) || ! isscalar (b)) [retval, x, a, b] = common_size (x, a, b); if (retval > 0) error ("unifpdf: X, A, and B must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (a) || iscomplex (b)) error ("unifpdf: X, A, and B must not be complex"); endif if (isa (x, "single") || isa (a, "single") || isa (b, "single")) pdf = zeros (size (x), "single"); else pdf = zeros (size (x)); endif k = isnan (x) | !(a < b); pdf(k) = NaN; k = (x >= a) & (x <= b) & (a < b); if (isscalar (a) && isscalar (b)) pdf(k) = 1 / (b - a); else pdf(k) = 1 ./ (b(k) - a(k)); endif endfunction %!shared x,y %! x = [-1 0 0.5 1 2] + 1; %! y = [0 1 1 1 0]; %!assert (unifpdf (x, ones (1,5), 2*ones (1,5)), y) %!assert (unifpdf (x, 1, 2*ones (1,5)), y) %!assert (unifpdf (x, ones (1,5), 2), y) %!assert (unifpdf (x, [2 NaN 1 1 1], 2), [NaN NaN y(3:5)]) %!assert (unifpdf (x, 1, 2*[0 NaN 1 1 1]), [NaN NaN y(3:5)]) %!assert (unifpdf ([x, NaN], 1, 2), [y, NaN]) ## Test class of input preserved %!assert (unifpdf (single ([x, NaN]), 1, 2), single ([y, NaN])) %!assert (unifpdf (single ([x, NaN]), single (1), 2), single ([y, NaN])) %!assert (unifpdf ([x, NaN], 1, single (2)), single ([y, NaN])) ## Test input validation %!error unifpdf () %!error unifpdf (1,2) %!error unifpdf (1,2,3,4) %!error unifpdf (ones (3), ones (2), ones (2)) %!error unifpdf (ones (2), ones (3), ones (2)) %!error unifpdf (ones (2), ones (2), ones (3)) %!error unifpdf (i, 2, 2) %!error unifpdf (2, i, 2) %!error unifpdf (2, 2, i)