Mercurial > hg > octave-nkf
view scripts/control/system/zp2ss.m @ 7795:df9519e9990c
Handle single precision eps values
author | David Bateman <dbateman@free.fr> |
---|---|
date | Mon, 12 May 2008 22:57:11 +0200 |
parents | 8aa770b6c5bf |
children |
line wrap: on
line source
## Copyright (C) 1996, 2000, 2002, 2003, 2004, 2005, 2007 ## Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{a}, @var{b}, @var{c}, @var{d}] =} zp2ss (@var{zer}, @var{pol}, @var{k}) ## Conversion from zero / pole to state space. ## ## @strong{Inputs} ## @table @var ## @item zer ## @itemx pol ## Vectors of (possibly) complex poles and zeros of a transfer ## function. Complex values must come in conjugate pairs ## (i.e., @math{x+jy} in @var{zer} means that @math{x-jy} is also in @var{zer}). ## The number of zeros must not exceed the number of poles. ## @item k ## Real scalar (leading coefficient). ## @end table ## ## @strong{Outputs} ## @table @var ## @item @var{a} ## @itemx @var{b} ## @itemx @var{c} ## @itemx @var{d} ## The state space system, in the form: ## @iftex ## @tex ## $$ \dot x = Ax + Bu $$ ## $$ y = Cx + Du $$ ## @end tex ## @end iftex ## @ifinfo ## @example ## . ## x = Ax + Bu ## y = Cx + Du ## @end example ## @end ifinfo ## @end table ## @end deftypefn ## Author: David Clem ## Created: August 15, 1994 function [a, b, c, d] = zp2ss (zer, pol, k) if (nargin != 3) print_usage (); endif if (! (isvector (zer) || isempty (zer))) error ("zer(%d,%d) should be a vector", rows (zer), columns (zer)); elseif (! (isvector (pol) || isempty (pol))) error ("pol(%d,%d) should be a vector", rows (pol), columns (pol)); elseif (! isscalar(k)) error ("k(%d,%d) should be a scalar", rows (k), columns (k)); elseif (k != real (k)) warning ("zp2ss: k is complex") endif zpsys = ss (zeros (0, 0), zeros (0, 1), zeros (1, 0), k); ## Find the number of zeros and the number of poles nzer = length (zer); npol = length (pol); if (nzer > npol) error ("%d zeros, exceeds number of poles=%d", nzer, npol); endif ## Sort to place complex conjugate pairs together zer = sortcom (zer); pol = sortcom (pol); ## construct the system as a series connection of poles and zeros ## problem: poles and zeros may come in conjugate pairs, and not ## matched up! ## approach: remove poles/zeros from the list as they are included in ## the ss system while (length (pol)) ## search for complex poles, zeros cpol = []; czer = []; if (! isempty (pol)) cpol = find (imag (pol) != 0); endif if (! isempty (zer)) czer = find (imag (zer) != 0); endif if (isempty (cpol) && isempty (czer)) pcnt = 1; else pcnt = 2; endif num = 1; # assume no zeros left. switch (pcnt) case 1 ## real pole/zero combination if (length (zer)) num = [1, -zer(1)]; zer = zer(2:length(zer)); endif den = [1, -pol(1)]; pol = pol(2:length(pol)); case 2 ## got a complex pole or zero, need two roots (if available) if (length (zer) > 1) [num, zer] = __zp2ssg2__ (zer); # get two zeros elseif (length (zer) == 1) num = [1, -zer]; # use last zero (better be real!) zer = []; endif [den, pol] = __zp2ssg2__ (pol); # get two poles otherwise error ("pcnt = %d", pcnt); endswitch ## pack tf into system form and put in series with earlier realization zpsys1 = tf (num, den, 0, "u", "yy"); ## change names to avoid warning messages from sysgroup zpsys = syssetsignals (zpsys, "in", "u1", 1); zpsys1 = sysupdate (zpsys1, "ss"); nn = sysdimensions (zpsys); # working with continuous system zpsys = syssetsignals (zpsys, "st", __sysdefioname__ (nn, "x")); nn1 = sysdimensions (zpsys1); zpsys1 = syssetsignals (zpsys1, "st", __sysdefioname__ (nn1, "xx")); zpsys = sysmult (zpsys, zpsys1); endwhile [a, b, c, d] = sys2ss (zpsys); endfunction