Mercurial > hg > octave-nkf
view scripts/general/quadl.m @ 7795:df9519e9990c
Handle single precision eps values
author | David Bateman <dbateman@free.fr> |
---|---|
date | Mon, 12 May 2008 22:57:11 +0200 |
parents | a1dbe9d80eee |
children | eb63fbe60fab |
line wrap: on
line source
## Copyright (C) 1998, 2006, 2007 Walter Gautschi ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}) ## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}) ## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}) ## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{}) ## ## Numerically evaluate integral using adaptive Lobatto rule. ## @code{quadl (@var{f}, @var{a}, @var{b})} approximates the integral of ## @code{@var{f}(@var{x})} to machine precision. @var{f} is either a ## function handle, inline function or string containing the name of ## the function to evaluate. The function @var{f} must return a vector ## of output values if given a vector of input values. ## ## If defined, @var{tol} defines the relative tolerance to which to ## which to integrate @code{@var{f}(@var{x})}. While if @var{trace} is ## defined, displays the left end point of the current interval, the ## interval length, and the partial integral. ## ## Additional arguments @var{p1}, etc, are passed directly to @var{f}. ## To use default values for @var{tol} and @var{trace}, one may pass ## empty matrices. ## ## Reference: W. Gander and W. Gautschi, 'Adaptive Quadrature - ## Revisited', BIT Vol. 40, No. 1, March 2000, pp. 84--101. ## @url{http://www.inf.ethz.ch/personal/gander/} ## ## @end deftypefn ## Author: Walter Gautschi ## Date: 08/03/98 ## Reference: Gander, Computermathematik, Birkhaeuser, 1992. ## 2003-08-05 Shai Ayal ## * permission from author to release as GPL ## 2004-02-10 Paul Kienzle ## * renamed to quadl for compatibility ## * replace global variable terminate2 with local function need_warning ## * add paper ref to docs function Q = quadl (f, a, b, tol, trace, varargin) need_warning (1); if (nargin < 4) tol = []; endif if (nargin < 5) trace = []; endif if (isa (a, "single") || isa (b, "single")) myeps = eps ("single"); else myeps = eps; endif if (isempty (tol)) tol = myeps; endif if (isempty (trace)) trace = 0; endif if (tol < myeps) tol = myeps; endif m = (a+b)/2; h = (b-a)/2; alpha = sqrt(2/3); beta = 1/sqrt(5); x1 = .942882415695480; x2 = .641853342345781; x3 = .236383199662150; x = [a, m-x1*h, m-alpha*h, m-x2*h, m-beta*h, m-x3*h, m, m+x3*h, ... m+beta*h, m+x2*h, m+alpha*h, m+x1*h, b]; y = feval (f, x, varargin{:}); fa = y(1); fb = y(13); i2 = (h/6)*(y(1) + y(13) + 5*(y(5)+y(9))); i1 = (h/1470)*(77*(y(1)+y(13)) + 432*(y(3)+y(11)) + 625*(y(5)+y(9)) + 672*y(7)); is = h*(.0158271919734802*(y(1)+y(13)) +.0942738402188500*(y(2)+y(12)) + .155071987336585*(y(3)+y(11)) + .188821573960182*(y(4)+y(10)) + .199773405226859*(y(5)+y(9)) + .224926465333340*(y(6)+y(8)) + .242611071901408*y(7)); s = sign(is); if (s == 0) s = 1; endif erri1 = abs(i1-is); erri2 = abs(i2-is); R = 1; if (erri2 != 0) R = erri1/erri2; endif if (R > 0 && R < 1) tol = tol/R; endif is = s*abs(is)*tol/myeps; if (is == 0) is = b-a; endif Q = adaptlobstp (f, a, b, fa, fb, is, trace, varargin{:}); endfunction ## ADAPTLOBSTP Recursive function used by QUADL. ## ## Q = ADAPTLOBSTP('F', A, B, FA, FB, IS, TRACE) tries to ## approximate the integral of F(X) from A to B to ## an appropriate relative error. The argument 'F' is ## a string containing the name of f. The remaining ## arguments are generated by ADAPTLOB or by recursion. ## ## Walter Gautschi, 08/03/98 function Q = adaptlobstp (f, a, b, fa, fb, is, trace, varargin) h = (b-a)/2; m = (a+b)/2; alpha = sqrt(2/3); beta = 1/sqrt(5); mll = m-alpha*h; ml = m-beta*h; mr = m+beta*h; mrr = m+alpha*h; x = [mll, ml, m, mr, mrr]; y = feval(f, x, varargin{:}); fmll = y(1); fml = y(2); fm = y(3); fmr = y(4); fmrr = y(5); i2 = (h/6)*(fa + fb + 5*(fml+fmr)); i1 = (h/1470)*(77*(fa+fb) + 432*(fmll+fmrr) + 625*(fml+fmr) + 672*fm); if (is+(i1-i2) == is || mll <= a || b <= mrr) if ((m <= a || b <= m) && need_warning ()) warning ("quadl: interval contains no more machine number"); warning ("quadl: required tolerance may not be met"); need_warning (0); endif Q = i1; if (trace) disp ([a, b-a, Q]); endif else Q = (adaptlobstp (f, a, mll, fa, fmll, is, trace, varargin{:}) + adaptlobstp (f, mll, ml, fmll, fml, is, trace, varargin{:}) + adaptlobstp (f, ml, m, fml, fm, is, trace, varargin{:}) + adaptlobstp (f, m, mr, fm, fmr, is, trace, varargin{:}) + adaptlobstp (f, mr, mrr, fmr, fmrr, is, trace, varargin{:}) + adaptlobstp (f, mrr, b, fmrr, fb, is, trace, varargin{:})); endif endfunction function r = need_warning (v) persistent w = []; if (nargin == 0) r = w; else w = v; endif endfunction