Mercurial > hg > octave-nkf
view src/ov-intx.h @ 12119:e320928eeb3a release-3-2-x release-3-2-4
version 3.2.4
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Fri, 22 Jan 2010 12:43:12 +0100 |
parents | 49affc56fac2 |
children |
line wrap: on
line source
/* Copyright (C) 2004, 2005, 2006, 2007, 2008 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #include <cstdlib> #include <iosfwd> #include <string> #include "mx-base.h" #include "oct-alloc.h" #include "str-vec.h" #include "error.h" #include "oct-stream.h" #include "ov-base.h" #include "ov-base-int.h" #include "ov-typeinfo.h" #include "gripes.h" #include "ov-re-mat.h" #include "ov-scalar.h" class OCTINTERP_API OCTAVE_VALUE_INT_MATRIX_T : public octave_base_int_matrix<intNDArray<OCTAVE_INT_T> > { public: OCTAVE_VALUE_INT_MATRIX_T (void) : octave_base_int_matrix<intNDArray<OCTAVE_INT_T> > () { } OCTAVE_VALUE_INT_MATRIX_T (const intNDArray<OCTAVE_INT_T>& nda) : octave_base_int_matrix<intNDArray<OCTAVE_INT_T> > (nda) { } OCTAVE_VALUE_INT_MATRIX_T (const ArrayN<OCTAVE_INT_T>& nda) : octave_base_int_matrix<intNDArray<OCTAVE_INT_T> > (intNDArray<OCTAVE_INT_T> (nda)) { } ~OCTAVE_VALUE_INT_MATRIX_T (void) { } octave_base_value *clone (void) const { return new OCTAVE_VALUE_INT_MATRIX_T (*this); } octave_base_value *empty_clone (void) const { return new OCTAVE_VALUE_INT_MATRIX_T (); } bool OCTAVE_TYPE_PREDICATE_FUNCTION (void) const { return true; } bool is_integer_type (void) const { return true; } private: template <class IM> IM convert_gripe () const { typedef typename IM::element_type dest_el_type; typedef intNDArray<OCTAVE_INT_T>::element_type src_el_type; dest_el_type::clear_conv_flag (); IM retval (matrix); if (dest_el_type::get_trunc_flag ()) gripe_truncated_conversion (src_el_type::type_name (), dest_el_type::type_name ()); dest_el_type::clear_conv_flag (); return retval; } public: int8NDArray int8_array_value (void) const { return convert_gripe<int8NDArray> (); } int16NDArray int16_array_value (void) const { return convert_gripe<int16NDArray> (); } int32NDArray int32_array_value (void) const { return convert_gripe<int32NDArray> (); } int64NDArray int64_array_value (void) const { return convert_gripe<int64NDArray> (); } uint8NDArray uint8_array_value (void) const { return convert_gripe<uint8NDArray> (); } uint16NDArray uint16_array_value (void) const { return convert_gripe<uint16NDArray> (); } uint32NDArray uint32_array_value (void) const { return convert_gripe<uint32NDArray> (); } uint64NDArray uint64_array_value (void) const { return convert_gripe<uint64NDArray> (); } double double_value (bool = false) const { double retval = lo_ieee_nan_value (); if (numel () > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", type_name (), "real scalar"); retval = matrix(0).double_value (); } else gripe_invalid_conversion (type_name (), "real scalar"); return retval; } float float_value (bool = false) const { float retval = lo_ieee_float_nan_value (); if (numel () > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", type_name (), "real scalar"); retval = matrix(0).float_value (); } else gripe_invalid_conversion (type_name (), "real scalar"); return retval; } double scalar_value (bool = false) const { return double_value (); } float float_scalar_value (bool = false) const { return float_value (); } Matrix matrix_value (bool = false) const { Matrix retval; dim_vector dv = dims (); if (dv.length () > 2) error ("invalid conversion of %s to Matrix", type_name().c_str ()); else { retval = Matrix (dv(0), dv(1)); double *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).double_value (); } return retval; } FloatMatrix float_matrix_value (bool = false) const { FloatMatrix retval; dim_vector dv = dims (); if (dv.length () > 2) error ("invalid conversion of %s to FloatMatrix", type_name().c_str ()); else { retval = FloatMatrix (dv(0), dv(1)); float *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).float_value (); } return retval; } ComplexMatrix complex_matrix_value (bool = false) const { ComplexMatrix retval; dim_vector dv = dims(); if (dv.length () > 2) error ("invalid conversion of %s to Matrix", type_name().c_str ()); else { retval = ComplexMatrix (dv(0), dv(1)); Complex *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = Complex (matrix(i).double_value ()); } return retval; } FloatComplexMatrix float_complex_matrix_value (bool = false) const { FloatComplexMatrix retval; dim_vector dv = dims(); if (dv.length () > 2) error ("invalid conversion of %s to FloatMatrix", type_name().c_str ()); else { retval = FloatComplexMatrix (dv(0), dv(1)); FloatComplex *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = FloatComplex (matrix(i).float_value ()); } return retval; } NDArray array_value (bool = false) const { NDArray retval (matrix.dims ()); double *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).double_value (); return retval; } FloatNDArray float_array_value (bool = false) const { FloatNDArray retval (matrix.dims ()); float *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).float_value (); return retval; } ComplexNDArray complex_array_value (bool = false) const { ComplexNDArray retval (matrix.dims ()); Complex *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = Complex (matrix(i).double_value ()); return retval; } FloatComplexNDArray float_complex_array_value (bool = false) const { FloatComplexNDArray retval (matrix.dims ()); FloatComplex *vec = retval.fortran_vec (); octave_idx_type nel = matrix.numel (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = FloatComplex (matrix(i).float_value ()); return retval; } boolNDArray bool_array_value (bool warn = false) const { boolNDArray retval (dims ()); octave_idx_type nel = numel (); if (warn && matrix.any_element_not_one_or_zero ()) gripe_logical_conversion (); bool *vec = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).bool_value (); return retval; } charNDArray char_array_value (bool = false) const { charNDArray retval (dims ()); octave_idx_type nel = numel (); char *vec = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) vec[i] = matrix(i).char_value (); return retval; } void increment (void) { matrix += OCTAVE_INT_T (1); if (OCTAVE_INT_T::get_math_trunc_flag ()) gripe_unop_integer_math_truncated ("++", type_name (). c_str ()); OCTAVE_INT_T::clear_conv_flag (); } void decrement (void) { matrix -= OCTAVE_INT_T (1); if (OCTAVE_INT_T::get_math_trunc_flag ()) gripe_unop_integer_math_truncated ("--", type_name (). c_str ()); OCTAVE_INT_T::clear_conv_flag (); } idx_vector index_vector (void) const { return idx_vector (matrix); } int write (octave_stream& os, int block_size, oct_data_conv::data_type output_type, int skip, oct_mach_info::float_format flt_fmt) const { return os.write (matrix, block_size, output_type, skip, flt_fmt); } // Unsafe. This function exists to support the MEX interface. // You should not use it anywhere else. void *mex_get_data (void) const { return matrix.mex_get_data (); } mxArray *as_mxArray (void) const { mxArray *retval = new mxArray (OCTAVE_INT_MX_CLASS, dims (), mxREAL); OCTAVE_INT_T::val_type *pr = static_cast<OCTAVE_INT_T::val_type *> (retval->get_data ()); mwSize nel = numel (); const OCTAVE_INT_T *p = matrix.data (); for (mwIndex i = 0; i < nel; i++) pr[i] = p[i].value (); return retval; } #define MAT_MAPPER(FCN) \ octave_value FCN (void) const { return matrix.FCN (); } MAT_MAPPER (abs) MAT_MAPPER (signum) #undef MAT_MAPPER octave_value imag (void) const { return intNDArray<OCTAVE_INT_T> (matrix.dims (), static_cast<OCTAVE_INT_T>(0)); } #define NO_OP_MAPPER(FCN) \ octave_value FCN (void) const { return octave_value (matrix); } NO_OP_MAPPER (ceil) NO_OP_MAPPER (conj) NO_OP_MAPPER (fix) NO_OP_MAPPER (floor) NO_OP_MAPPER (real) NO_OP_MAPPER (round) NO_OP_MAPPER (roundb) #undef NO_OP_MAPPER #define BOOL_MAPPER(FCN, VAL) \ octave_value FCN (void) const { return boolNDArray (matrix.dims (), VAL); } BOOL_MAPPER (finite, true) BOOL_MAPPER (isinf, false) BOOL_MAPPER (isna, false) BOOL_MAPPER (isnan, false) #undef BOOL_MAPPER private: DECLARE_OCTAVE_ALLOCATOR DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA }; class OCTINTERP_API OCTAVE_VALUE_INT_SCALAR_T : public octave_base_int_scalar<OCTAVE_INT_T> { public: OCTAVE_VALUE_INT_SCALAR_T (void) : octave_base_int_scalar<OCTAVE_INT_T> () { } OCTAVE_VALUE_INT_SCALAR_T (const OCTAVE_INT_T& nda) : octave_base_int_scalar<OCTAVE_INT_T> (nda) { } ~OCTAVE_VALUE_INT_SCALAR_T (void) { } octave_base_value *clone (void) const { return new OCTAVE_VALUE_INT_SCALAR_T (*this); } octave_base_value *empty_clone (void) const { return new OCTAVE_VALUE_INT_MATRIX_T (); } octave_value do_index_op (const octave_value_list& idx, bool resize_ok = false) { // FIXME -- this doesn't solve the problem of // // a = 1; a([1,1], [1,1], [1,1]) // // and similar constructions. Hmm... // FIXME -- using this constructor avoids narrowing the // 1x1 matrix back to a scalar value. Need a better solution // to this problem. octave_value tmp (new OCTAVE_VALUE_INT_MATRIX_T (OCTAVE_VALUE_INT_NDARRAY_EXTRACTOR_FUNCTION ())); return tmp.do_index_op (idx, resize_ok); } bool OCTAVE_TYPE_PREDICATE_FUNCTION (void) const { return true; } bool is_integer_type (void) const { return true; } private: template <class IS> IS convert_gripe () const { typedef IS dest_el_type; typedef OCTAVE_INT_T src_el_type; dest_el_type::clear_conv_flag (); IS retval (scalar); if (dest_el_type::get_trunc_flag ()) gripe_truncated_conversion (src_el_type::type_name (), dest_el_type::type_name ()); dest_el_type::clear_conv_flag (); return retval; } public: octave_int8 int8_scalar_value (void) const { return convert_gripe<octave_int8> (); } octave_int16 int16_scalar_value (void) const { return convert_gripe<octave_int16> (); } octave_int32 int32_scalar_value (void) const { return convert_gripe<octave_int32> (); } octave_int64 int64_scalar_value (void) const { return convert_gripe<octave_int64> (); } octave_uint8 uint8_scalar_value (void) const { return convert_gripe<octave_uint8> (); } octave_uint16 uint16_scalar_value (void) const { return convert_gripe<octave_uint16> (); } octave_uint32 uint32_scalar_value (void) const { return convert_gripe<octave_uint32> (); } octave_uint64 uint64_scalar_value (void) const { return convert_gripe<octave_uint64> (); } int8NDArray int8_array_value (void) const { return int8NDArray (dim_vector (1, 1), int8_scalar_value ()); } int16NDArray int16_array_value (void) const { return int16NDArray (dim_vector (1, 1), int16_scalar_value ()); } int32NDArray int32_array_value (void) const { return int32NDArray (dim_vector (1, 1), int32_scalar_value ()); } int64NDArray int64_array_value (void) const { return int64NDArray (dim_vector (1, 1), int64_scalar_value ()); } uint8NDArray uint8_array_value (void) const { return uint8NDArray (dim_vector (1, 1), uint8_scalar_value ()); } uint16NDArray uint16_array_value (void) const { return uint16NDArray (dim_vector (1, 1), uint16_scalar_value ()); } uint32NDArray uint32_array_value (void) const { return uint32NDArray (dim_vector (1, 1), uint32_scalar_value ()); } uint64NDArray uint64_array_value (void) const { return uint64NDArray (dim_vector (1, 1), uint64_scalar_value ()); } octave_value resize (const dim_vector& dv, bool fill = false) const { if (fill) { intNDArray<OCTAVE_INT_T> retval (dv, 0); if (dv.numel()) retval(0) = scalar; return retval; } else { intNDArray<OCTAVE_INT_T> retval (dv); if (dv.numel()) retval(0) = scalar; return retval; } } double double_value (bool = false) const { return scalar.double_value (); } float float_value (bool = false) const { return scalar.float_value (); } double scalar_value (bool = false) const { return scalar.double_value (); } float float_scalar_value (bool = false) const { return scalar.float_value (); } Matrix matrix_value (bool = false) const { Matrix retval (1, 1); retval(0,0) = scalar.double_value (); return retval; } FloatMatrix float_matrix_value (bool = false) const { FloatMatrix retval (1, 1); retval(0,0) = scalar.float_value (); return retval; } ComplexMatrix complex_matrix_value (bool = false) const { ComplexMatrix retval (1, 1); retval(0,0) = Complex (scalar.double_value ()); return retval; } FloatComplexMatrix float_complex_matrix_value (bool = false) const { FloatComplexMatrix retval (1, 1); retval(0,0) = FloatComplex (scalar.float_value ()); return retval; } NDArray array_value (bool = false) const { NDArray retval (dim_vector (1, 1)); retval(0) = scalar.double_value (); return retval; } FloatNDArray float_array_value (bool = false) const { FloatNDArray retval (dim_vector (1, 1)); retval(0) = scalar.float_value (); return retval; } ComplexNDArray complex_array_value (bool = false) const { ComplexNDArray retval (dim_vector (1, 1)); retval(0) = FloatComplex (scalar.double_value ()); return retval; } FloatComplexNDArray float_complex_array_value (bool = false) const { FloatComplexNDArray retval (dim_vector (1, 1)); retval(0) = FloatComplex (scalar.float_value ()); return retval; } boolNDArray bool_array_value (bool warn = false) const { boolNDArray retval (dim_vector (1, 1)); if (warn && scalar != 0.0 && scalar != 1.0) gripe_logical_conversion (); retval(0) = scalar.bool_value (); return retval; } charNDArray char_array_value (bool = false) const { charNDArray retval (dim_vector (1, 1)); retval(0) = scalar.char_value (); return retval; } void increment (void) { scalar += OCTAVE_INT_T (1); if (OCTAVE_INT_T::get_math_trunc_flag ()) gripe_unop_integer_math_truncated ("++", type_name (). c_str ()); OCTAVE_INT_T::clear_conv_flag (); } void decrement (void) { scalar -= OCTAVE_INT_T (1); if (OCTAVE_INT_T::get_math_trunc_flag ()) gripe_unop_integer_math_truncated ("--", type_name (). c_str ()); OCTAVE_INT_T::clear_conv_flag (); } idx_vector index_vector (void) const { return idx_vector (scalar); } int write (octave_stream& os, int block_size, oct_data_conv::data_type output_type, octave_idx_type skip, oct_mach_info::float_format flt_fmt) const { return os.write (OCTAVE_VALUE_INT_NDARRAY_EXTRACTOR_FUNCTION (), block_size, output_type, skip, flt_fmt); } // Unsafe. This function exists to support the MEX interface. // You should not use it anywhere else. void *mex_get_data (void) const { return scalar.mex_get_data (); } mxArray *as_mxArray (void) const { mxArray *retval = new mxArray (OCTAVE_INT_MX_CLASS, 1, 1, mxREAL); OCTAVE_INT_T::val_type *pr = static_cast<OCTAVE_INT_T::val_type *> (retval->get_data ()); pr[0] = scalar.value (); return retval; } #define SCALAR_MAPPER(FCN) \ octave_value FCN (void) const { return scalar.FCN (); } SCALAR_MAPPER (abs) SCALAR_MAPPER (signum) #undef SCALAR_MAPPER octave_value imag (void) const { return static_cast<OCTAVE_INT_T>(0); } #define NO_OP_MAPPER(FCN) \ octave_value FCN (void) const { return octave_value (scalar); } NO_OP_MAPPER (ceil) NO_OP_MAPPER (conj) NO_OP_MAPPER (fix) NO_OP_MAPPER (floor) NO_OP_MAPPER (real) NO_OP_MAPPER (round) NO_OP_MAPPER (roundb) #undef NO_OP_MAPPER #define BOOL_MAPPER(FCN, VAL) octave_value FCN (void) const { return VAL; } BOOL_MAPPER (finite, true) BOOL_MAPPER (isinf, false) BOOL_MAPPER (isna, false) BOOL_MAPPER (isnan, false) #undef BOOL_MAPPER private: DECLARE_OCTAVE_ALLOCATOR DECLARE_OV_TYPEID_FUNCTIONS_AND_DATA }; /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */