Mercurial > hg > octave-nkf
view src/DLD-FUNCTIONS/tsearch.cc @ 10811:e38c071bbc41
allow user query the maximum array size
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Wed, 21 Jul 2010 08:47:34 +0200 |
parents | c48b7048e720 |
children | fd0a3ac60b0e |
line wrap: on
line source
/* Copyright (C) 2002, 2007, 2009 Andreas Stahel This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ // Author: Andreas Stahel <Andreas.Stahel@hta-bi.bfh.ch> #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include <fstream> #include <string> #include "lo-ieee.h" #include "lo-math.h" #include "defun-dld.h" #include "error.h" #include "oct-obj.h" #include "parse.h" inline double max (double a, double b, double c) { if (a < b) return (b < c ? c : b); else return (a < c ? c : a); } inline double min (double a, double b, double c) { if (a > b) return (b > c ? c : b); else return (a > c ? c : a); } #define REF(x,k,i) x(static_cast<octave_idx_type>(elem((k), (i))) - 1) // for large data set the algorithm is very slow // one should presort (how?) either the elements of the points of evaluation // to cut down the time needed to decide which triangle contains the // given point // e.g., build up a neighbouring triangle structure and use a simplex-like // method to traverse it DEFUN_DLD (tsearch, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{idx} =} tsearch (@var{x}, @var{y}, @var{t}, @var{xi}, @var{yi})\n\ Searches for the enclosing Delaunay convex hull. For @code{@var{t} =\n\ delaunay (@var{x}, @var{y})}, finds the index in @var{t} containing the\n\ points @code{(@var{xi}, @var{yi})}. For points outside the convex hull,\n\ @var{idx} is NaN.\n\ @seealso{delaunay, delaunayn}\n\ @end deftypefn") { const double eps=1.0e-12; octave_value_list retval; const int nargin = args.length (); if (nargin != 5) { print_usage (); return retval; } const ColumnVector x (args(0).vector_value ()); const ColumnVector y (args(1).vector_value ()); const Matrix elem (args(2).matrix_value ()); const ColumnVector xi (args(3).vector_value ()); const ColumnVector yi (args(4).vector_value ()); if (error_state) return retval; const octave_idx_type nelem = elem.rows (); ColumnVector minx (nelem); ColumnVector maxx (nelem); ColumnVector miny (nelem); ColumnVector maxy (nelem); for (octave_idx_type k = 0; k < nelem; k++) { minx(k) = min (REF (x, k, 0), REF (x, k, 1), REF (x, k, 2)) - eps; maxx(k) = max (REF (x, k, 0), REF (x, k, 1), REF (x, k, 2)) + eps; miny(k) = min (REF (y, k, 0), REF (y, k, 1), REF (y, k, 2)) - eps; maxy(k) = max (REF (y, k, 0), REF (y, k, 1), REF (y, k, 2)) + eps; } const octave_idx_type np = xi.length (); ColumnVector values (np); double x0 = 0.0, y0 = 0.0; double a11 = 0.0, a12 = 0.0, a21 = 0.0, a22 = 0.0, det = 0.0; octave_idx_type k = nelem; // k is a counter of elements for (octave_idx_type kp = 0; kp < np; kp++) { const double xt = xi(kp); const double yt = yi(kp); // check if last triangle contains the next point if (k < nelem) { const double dx1 = xt - x0; const double dx2 = yt - y0; const double c1 = (a22 * dx1 - a21 * dx2) / det; const double c2 = (-a12 * dx1 + a11 * dx2) / det; if (c1 >= -eps && c2 >= -eps && (c1 + c2) <= (1 + eps)) { values(kp) = double(k+1); continue; } } // it doesn't, so go through all elements for (k = 0; k < nelem; k++) { OCTAVE_QUIT; if (xt >= minx(k) && xt <= maxx(k) && yt >= miny(k) && yt <= maxy(k)) { // element inside the minimum rectangle: examine it closely x0 = REF (x, k, 0); y0 = REF (y, k, 0); a11 = REF (x, k, 1) - x0; a12 = REF (y, k, 1) - y0; a21 = REF (x, k, 2) - x0; a22 = REF (y, k, 2) - y0; det = a11 * a22 - a21 * a12; // solve the system const double dx1 = xt - x0; const double dx2 = yt - y0; const double c1 = (a22 * dx1 - a21 * dx2) / det; const double c2 = (-a12 * dx1 + a11 * dx2) / det; if ((c1 >= -eps) && (c2 >= -eps) && ((c1 + c2) <= (1 + eps))) { values(kp) = double(k+1); break; } } //endif # examine this element closely } //endfor # each element if (k == nelem) values(kp) = lo_ieee_nan_value (); } //endfor # kp retval(0) = values; return retval; } /* %!shared x, y, tri %! x = [-1;-1;1]; %! y = [-1;1;-1]; %! tri = [1, 2, 3]; %!error (tsearch()) %!assert (tsearch (x,y,tri,-1,-1), 1) %!assert (tsearch (x,y,tri, 1,-1), 1) %!assert (tsearch (x,y,tri,-1, 1), 1) %!assert (tsearch (x,y,tri,-1/3, -1/3), 1) %!assert (tsearch (x,y,tri, 1, 1), NaN) */