Mercurial > hg > octave-nkf
view src/ov-bool-sparse.cc @ 10811:e38c071bbc41
allow user query the maximum array size
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Wed, 21 Jul 2010 08:47:34 +0200 |
parents | b4d2080b6df7 |
children | fd0a3ac60b0e |
line wrap: on
line source
/* Copyright (C) 2004, 2005, 2006, 2007, 2008 David Bateman Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <climits> #include <iostream> #include <vector> #include "ov-base.h" #include "ov-scalar.h" #include "ov-bool.h" #include "ov-bool-mat.h" #include "gripes.h" #include "ops.h" #include "oct-locbuf.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "ov-bool-sparse.h" #include "ov-base-sparse.h" #include "ov-base-sparse.cc" template class OCTINTERP_API octave_base_sparse<SparseBoolMatrix>; DEFINE_OCTAVE_ALLOCATOR (octave_sparse_bool_matrix); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_sparse_bool_matrix, "sparse bool matrix", "logical"); static octave_base_value * default_numeric_conversion_function (const octave_base_value& a) { CAST_CONV_ARG (const octave_sparse_bool_matrix&); return new octave_sparse_matrix (SparseMatrix (v.sparse_bool_matrix_value ())); } octave_base_value::type_conv_info octave_sparse_bool_matrix::numeric_conversion_function (void) const { return octave_base_value::type_conv_info (default_numeric_conversion_function, octave_sparse_matrix::static_type_id ()); } octave_base_value * octave_sparse_bool_matrix::try_narrowing_conversion (void) { octave_base_value *retval = 0; if (Vsparse_auto_mutate) { // Don't use numel, since it can overflow for very large matrices // Note that for the second test, this means it becomes approximative // since it involves a cast to double to avoid issues of overflow if (matrix.rows () == 1 && matrix.cols () == 1) { // Const copy of the matrix, so the right version of () operator used const SparseBoolMatrix tmp (matrix); retval = new octave_bool (tmp (0)); } else if (matrix.cols () > 0 && matrix.rows () > 0 && (double (matrix.byte_size ()) > double (matrix.rows ()) * double (matrix.cols ()) * sizeof (bool))) retval = new octave_bool_matrix (matrix.matrix_value ()); } return retval; } double octave_sparse_bool_matrix::double_value (bool) const { double retval = lo_ieee_nan_value (); if (numel () > 0) { if (numel () > 1) gripe_implicit_conversion ("Octave:array-as-scalar", "bool sparse matrix", "real scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("bool sparse matrix", "real scalar"); return retval; } Complex octave_sparse_bool_matrix::complex_value (bool) const { double tmp = lo_ieee_nan_value (); Complex retval (tmp, tmp); if (rows () > 0 && columns () > 0) { if (numel () > 1) gripe_implicit_conversion ("Octave:array-as-scalar", "bool sparse matrix", "complex scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("bool sparse matrix", "complex scalar"); return retval; } octave_value octave_sparse_bool_matrix::convert_to_str_internal (bool pad, bool force, char type) const { octave_value tmp = octave_value (array_value ()); return tmp.convert_to_str (pad, force, type); } // FIXME These are inefficient ways of creating full matrices Matrix octave_sparse_bool_matrix::matrix_value (bool) const { return Matrix (matrix.matrix_value ()); } ComplexMatrix octave_sparse_bool_matrix::complex_matrix_value (bool) const { return ComplexMatrix (matrix.matrix_value ()); } ComplexNDArray octave_sparse_bool_matrix::complex_array_value (bool) const { return ComplexNDArray (ComplexMatrix (matrix.matrix_value ())); } NDArray octave_sparse_bool_matrix::array_value (bool) const { return NDArray (Matrix(matrix.matrix_value ())); } charNDArray octave_sparse_bool_matrix::char_array_value (bool) const { charNDArray retval (dims (), 0); octave_idx_type nc = matrix.cols (); octave_idx_type nr = matrix.rows (); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = matrix.cidx(j); i < matrix.cidx(j+1); i++) retval(matrix.ridx(i) + nr * j) = static_cast<char>(matrix.data (i)); return retval; } boolMatrix octave_sparse_bool_matrix::bool_matrix_value (bool) const { return matrix.matrix_value (); } boolNDArray octave_sparse_bool_matrix::bool_array_value (bool) const { return boolNDArray (matrix.matrix_value ()); } SparseMatrix octave_sparse_bool_matrix::sparse_matrix_value (bool) const { return SparseMatrix (this->matrix); } SparseComplexMatrix octave_sparse_bool_matrix::sparse_complex_matrix_value (bool) const { return SparseComplexMatrix (this->matrix); } bool octave_sparse_bool_matrix::save_binary (std::ostream& os, bool&) { dim_vector d = this->dims (); if (d.length() < 1) return false; // Ensure that additional memory is deallocated matrix.maybe_compress (); int nr = d(0); int nc = d(1); int nz = nnz (); int32_t itmp; // Use negative value for ndims to be consistent with other formats itmp= -2; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nr; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nc; os.write (reinterpret_cast<char *> (&itmp), 4); itmp= nz; os.write (reinterpret_cast<char *> (&itmp), 4); // add one to the printed indices to go from // zero-based to one-based arrays for (int i = 0; i < nc+1; i++) { octave_quit (); itmp = matrix.cidx(i); os.write (reinterpret_cast<char *> (&itmp), 4); } for (int i = 0; i < nz; i++) { octave_quit (); itmp = matrix.ridx(i); os.write (reinterpret_cast<char *> (&itmp), 4); } OCTAVE_LOCAL_BUFFER (char, htmp, nz); for (int i = 0; i < nz; i++) htmp[i] = (matrix.data (i) ? 1 : 0); os.write (htmp, nz); return true; } bool octave_sparse_bool_matrix::load_binary (std::istream& is, bool swap, oct_mach_info::float_format /* fmt */) { int32_t nz, nc, nr, tmp; if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); if (tmp != -2) { error ("load: only 2D sparse matrices are supported"); return false; } if (! is.read (reinterpret_cast<char *> (&nr), 4)) return false; if (! is.read (reinterpret_cast<char *> (&nc), 4)) return false; if (! is.read (reinterpret_cast<char *> (&nz), 4)) return false; if (swap) { swap_bytes<4> (&nr); swap_bytes<4> (&nc); swap_bytes<4> (&nz); } SparseBoolMatrix m (static_cast<octave_idx_type> (nr), static_cast<octave_idx_type> (nc), static_cast<octave_idx_type> (nz)); for (int i = 0; i < nc+1; i++) { octave_quit (); if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); m.cidx(i) = tmp; } for (int i = 0; i < nz; i++) { octave_quit (); if (! is.read (reinterpret_cast<char *> (&tmp), 4)) return false; if (swap) swap_bytes<4> (&tmp); m.ridx(i) = tmp; } if (error_state || ! is) return false; OCTAVE_LOCAL_BUFFER (char, htmp, nz); if (! is.read (htmp, nz)) return false; for (int i = 0; i < nz; i++) m.data(i) = (htmp[i] ? 1 : 0); if (! m.indices_ok ()) return false; matrix = m; return true; } #if defined (HAVE_HDF5) bool octave_sparse_bool_matrix::save_hdf5 (hid_t loc_id, const char *name, bool) { dim_vector dv = dims (); int empty = save_hdf5_empty (loc_id, name, dv); if (empty) return (empty > 0); // Ensure that additional memory is deallocated matrix.maybe_compress (); #if HAVE_HDF5_18 hid_t group_hid = H5Gcreate (loc_id, name, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else hid_t group_hid = H5Gcreate (loc_id, name, 0); #endif if (group_hid < 0) return false; hid_t space_hid = -1, data_hid = -1; bool retval = true; SparseBoolMatrix m = sparse_bool_matrix_value (); octave_idx_type tmp; hsize_t hdims[2]; space_hid = H5Screate_simple (0, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "nr", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "nr", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.rows (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "nc", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "nc", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.cols (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "nz", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "nz", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } tmp = m.nnz (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &tmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); hdims[0] = m.cols() + 1; hdims[1] = 1; space_hid = H5Screate_simple (2, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "cidx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "cidx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } octave_idx_type * itmp = m.xcidx (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); hdims[0] = m.nnz (); hdims[1] = 1; space_hid = H5Screate_simple (2, hdims, 0); if (space_hid < 0) { H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "ridx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "ridx", H5T_NATIVE_IDX, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } itmp = m.xridx (); retval = H5Dwrite (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) >= 0; H5Dclose (data_hid); if (!retval) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } #if HAVE_HDF5_18 data_hid = H5Dcreate (group_hid, "data", H5T_NATIVE_HBOOL, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (group_hid, "data", H5T_NATIVE_HBOOL, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); H5Gclose (group_hid); return false; } OCTAVE_LOCAL_BUFFER (hbool_t, htmp, m.nnz ()); for (int i = 0; i < m.nnz (); i++) htmp[i] = m.xdata(i); retval = H5Dwrite (data_hid, H5T_NATIVE_HBOOL, H5S_ALL, H5S_ALL, H5P_DEFAULT, htmp) >= 0; H5Dclose (data_hid); H5Sclose (space_hid); H5Gclose (group_hid); return retval; } bool octave_sparse_bool_matrix::load_hdf5 (hid_t loc_id, const char *name) { octave_idx_type nr, nc, nz; hid_t group_hid, data_hid, space_hid; hsize_t rank; dim_vector dv; int empty = load_hdf5_empty (loc_id, name, dv); if (empty > 0) matrix.resize(dv); if (empty) return (empty > 0); #if HAVE_HDF5_18 group_hid = H5Gopen (loc_id, name, H5P_DEFAULT); #else group_hid = H5Gopen (loc_id, name); #endif if (group_hid < 0 ) return false; #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "nr", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "nr"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nr) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "nc", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "nc"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nc) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "nz", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "nz"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, &nz) < 0) { H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Dclose (data_hid); SparseBoolMatrix m (static_cast<octave_idx_type> (nr), static_cast<octave_idx_type> (nc), static_cast<octave_idx_type> (nz)); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "cidx", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "cidx"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank); H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nc + 1 || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } octave_idx_type *itmp = m.xcidx (); if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) < 0) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "ridx", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "ridx"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nz || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } itmp = m.xridx (); if (H5Dread (data_hid, H5T_NATIVE_IDX, H5S_ALL, H5S_ALL, H5P_DEFAULT, itmp) < 0) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sclose (space_hid); H5Dclose (data_hid); #if HAVE_HDF5_18 data_hid = H5Dopen (group_hid, "data", H5P_DEFAULT); #else data_hid = H5Dopen (group_hid, "data"); #endif space_hid = H5Dget_space (data_hid); rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 2) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } H5Sget_simple_extent_dims (space_hid, hdims, maxdims); if (static_cast<int> (hdims[0]) != nz || static_cast<int> (hdims[1]) != 1) { H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return false; } OCTAVE_LOCAL_BUFFER (hbool_t, htmp, nz); bool retval = false; if (H5Dread (data_hid, H5T_NATIVE_HBOOL, H5S_ALL, H5S_ALL, H5P_DEFAULT, htmp) >= 0 && m.indices_ok ()) { retval = true; for (int i = 0; i < nz; i++) m.xdata(i) = htmp[i]; matrix = m; } H5Sclose (space_hid); H5Dclose (data_hid); H5Gclose (group_hid); return retval; } #endif mxArray * octave_sparse_bool_matrix::as_mxArray (void) const { mwSize nz = nzmax (); mxArray *retval = new mxArray (mxLOGICAL_CLASS, rows (), columns (), nz, mxREAL); bool *pr = static_cast<bool *> (retval->get_data ()); mwIndex *ir = retval->get_ir (); mwIndex *jc = retval->get_jc (); for (mwIndex i = 0; i < nz; i++) { pr[i] = matrix.data(i); ir[i] = matrix.ridx(i); } for (mwIndex i = 0; i < columns () + 1; i++) jc[i] = matrix.cidx(i); return retval; }